Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory. The co-amorphous mixture, prepared by solvent evaporation, was characterized using various analytical techniques, including polarized microscopy, differential scanning calorimetry, and powder X-ray diffraction, confirming its amorphous nature. Fourier transform infrared spectroscopy and molecular dynamic simulations revealed strong hydrogen bonding, with a proton transfer from the carboxyl group of BRE to the tertiary amine nitrogen of MAT. The resulting co-amorphous salt demonstrated substantial solubility improvement (> 8000-fold in water) and enhanced in vitro dissolution of BRE. The study also confirmed that the co-amorphous salt maintained physical stability at 40 °C and 75% relative humidity over 6 months. These findings provide a viable strategy for developing drug-drug co-amorphous formulations to enhance solubility and stability, with significant potential for pharmaceutical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-82524-2 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682056 | PMC |
Sci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFInt J Pharm
November 2024
Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China. Electronic address:
Eur J Pharm Biopharm
October 2024
Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China. Electronic address:
Sulfasalazine (SULF), a sulfonamide antibiotic, has been utilized in the treatment of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) since its discovery. However, its poor water solubility causes the high daily doses (1---3 g) for patients, which may lead to the intolerable toxic and side effects for their lifelong treatment for RA and IBD. In this work, two water-soluble natural anti-inflammatory alkaloids, matrine (MAR) and sophoridine (SPD), were employed to construct the co-amorphous systems of SULF for addressing its solubility issue.
View Article and Find Full Text PDFDrug Discov Today
February 2024
Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China. Electronic address:
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
December 2023
Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai, 200137, People's Republic of China.
A drug-drug cocrystal created with two antithrombotic-active ingredients from herbs, honokiol (HON) and ligustrazine (TMP, 1:1), was synthesized and characterized. The structure of HON-TMP (1:1) was determined by single-crystal X-ray diffraction. Then co-amorphous HON-TMP was prepared by honey-assisted grinding, which was inspired by a grinding process for a Chinese patent medicine-Shijunzi honey pill.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!