In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2). Subsequently, immune-regulated genes (IRGs) and machine learning algorithms were utilized to construct a consensus machine learning-driven prediction immunotherapy signature (CMPIS). Further, the prognostic model was validated and compared across multiple datasets, including clinical characteristics, external datasets, and previously published models. Ultimately, the response of different CMPIS patients to immunotherapy, targeted therapy, radiotherapy and chemotherapy was also explored. First, Two distinct molecular subtypes were successfully identified by integrating immunomics data with machine learning techniques, and it was discovered that the CS1 subtype tended to be classified as "cold tumors" or "immunosuppressive tumors", whereas the CS2 subtype was more likely to represent "hot tumors" or "immune-activated tumors". Second, 303 different algorithms were employed to construct prognostic models and the average C-index value for each model was calculated across various cohorts. Ultimately, the StepCox [forward] + Ridge algorithm, which had the highest average C-index value of 0.666, was selected and this algorithm was used to construct the CMPIS predictive model comprising 16 key genes. Third, this predictive model was compared with patients' clinical features, such as age, gender, TNM stage, and grade stage. The findings indicated that this prognostic model exhibited the best performance in terms of C-index and AUC values. Additionally, it was compared with previously published models and it was found that the C-index of CMPIS ranked in the top 5 among 94 models across the TCGA, GSE27020, GSE41613, GSE42743, GSE65858, and META datasets. Lastly, the study revealed that patients with lower CMPIS were more sensitive to immunotherapy and chemotherapy, while those with higher CMPIS were more responsive to radiation therapy and EGFR-targeted treatments. In summary, our study identified two CSs (CS1 and CS2) of HNSCC using multi-omics data and predicted patient prognosis and treatment response by constructing the CMPIS model with IRGs and 303 machine learning algorithms, which underscores the importance of immunotherapy biomarkers in providing more targeted, precise, and personalized immunotherapy plans for HNSCC patients, significantly contributing to the optimization of clinical treatment outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-83184-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682253 | PMC |
Sci Rep
December 2024
The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!