Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks. So, we have presented a multi-sensor fusion and segmentation for multi-object tracking using DQN in self-driving cars. Our proposed scheme incorporates the handling of pipelines for camera and LiDAR data and the development of an autonomous solution for object detection by handling sensor images. An Improved Adaptive Extended Kalman Filter (IAEKF) was used for noise reduction. The Contrast enhancement was done using a Normalised Gamma Transformation based CLAHE (NGT-CLAHE), and the adaptive thresholding was implemented using an Improved Adaptive Weighted Mean Filter (IAWMF) which was used for preprocessing. The multi-segmentation based on orientation employs various segmentation techniques and degrees. The dense net-based multi-image fusion gives more efficiency and a high memory in terms of fast processing time. The Energy Valley Optimizer (EVO) approach is used to select grid map-based paths and lanes. This strategy solves complicated tasks in a simple manner, which leads to ease of flexibility, resilience, and scalability. In addition, the YOLO V7 model is used for detection and categorization. The proposed work is evaluated using metrics such as velocity, accuracy rate, success rate, success ratio, mean squared error, loss rate, and accumulated reward.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682159PMC
http://dx.doi.org/10.1038/s41598-024-82356-0DOI Listing

Publication Analysis

Top Keywords

multi-sensor fusion
8
fusion segmentation
8
multi-object tracking
8
self-driving cars
8
improved adaptive
8
rate success
8
segmentation autonomous
4
autonomous vehicle
4
vehicle multi-object
4
tracking deep
4

Similar Publications

Background: To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors.

View Article and Find Full Text PDF

This paper proposes an improved remaining useful life (RUL) prediction method for stochastic degradation devices monitored by multi-source sensors under data-model interactive framework. Firstly, the interrelationships among sensors are established using k-nearest neighbor (KNN), and the composite health index (CHI) is constructed by aggregating the multi-source sensor information through the graph convolutional network (GCN). Secondly, a stochastic degradation model with triple uncertainty at any initial degradation level is established to improve the matching degree between the stochastic degradation model and the actual degradation process.

View Article and Find Full Text PDF

A Hybrid Harmonic Curve Model for Multi-Streamer Hydrophone Positioning in Seismic Exploration.

Sensors (Basel)

December 2024

Geophysical Division of China Oilfield Services Ltd., Tianjin 300451, China.

Towed streamer positioning is a vital and essential stage in marine seismic exploration, and accurate hydrophone coordinates exert a direct and significant influence on the quality and reliability of seismic imaging. Current methods predominantly rely on analytical polynomial models for towed streamer positioning; however, these models often produce significant errors when fitting to streamers with high curvature, particularly during turning scenarios. To address this limitation, this study introduces a novel multi-streamer analytical positioning method that uses a hybrid harmonic function to model the three-dimensional coordinates of streamers.

View Article and Find Full Text PDF

Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks.

View Article and Find Full Text PDF

Innovative Modeling of IMU Arrays Under the Generic Multi-Sensor Integration Strategy.

Sensors (Basel)

December 2024

Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.

This research proposes a novel modeling method for integrating IMU arrays into multi-sensor kinematic positioning/navigation systems. This method characterizes sensor errors (biases/scale factor errors) for each IMU in an IMU array, leveraging the novel Generic Multisensor Integration Strategy (GMIS) and the framework for comprehensive error analysis in Discrete Kalman filtering developed through the authors' previous research. This work enables the time-varying estimation of all individual sensor errors for an IMU array, as well as rigorous fault detection and exclusion for outlying measurements from all constituent sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!