A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nucleation and growth of zinc-templated mesoporous selenium nanoparticles and potential non-thermal effects during their microwave-assisted synthesis. | LitMetric

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.45 GHz MW heating method and conventional hydrothermal method at around 100 °C to produce the nanoparticles of different morphology and particle size distributions. The NPs morphology is tailored by varying the temperature ramp characteristics and the MW irradiation time. Under mild synthesis conditions only spherical particles are formed. Enhancing temperature ramp rate in the presence of CTAB micelles increases the metal-semiconductor hybrid particles growth rate and promotes the formation of nanorods and branched shapes. The effect is MW frequency dependent and non-thermal to some extent. Multi-step mechanism of mSeNPs formation is proposed based on derivative UV-Vis spectrophotometry and scanning electron microscopy (SEM) data. Both the stability of the chemical composition at a single particle level and the high efficiency of zinc template removal are determined by single particle microwave plasma optical emission spectrometry (SP-MWP-OES). After Zn template removal mSeNPs can be loaded with antifungal carbamate agent, hence the application as a nanopesticide is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-83124-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682174PMC

Publication Analysis

Top Keywords

mesoporous selenium
8
selenium nanoparticles
8
nps morphology
8
temperature ramp
8
single particle
8
template removal
8
nucleation growth
4
growth zinc-templated
4
zinc-templated mesoporous
4
nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!