A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The analysis of urban collaborative governance in public health emergencies with fuzzy theory based on BP algorithm. | LitMetric

This study seeks to improve urban supply chain management and collaborative governance in the context of public health emergencies (PHEs) by integrating fuzzy theory with the Back Propagation Neural Network (BPNN) algorithm. By combining these two approaches, an early warning mechanism for supply chain risks during PHEs is developed. The study employs Matlab software to simulate supply chain risks, incorporating fuzzy inference techniques with the adaptive data modeling capabilities of neural networks for both training and testing. The results demonstrate that the proposed model effectively identifies factors contributing to supply chain deterioration, with a warning error as low as 0.001, significantly enhancing the accuracy and timeliness of demand forecasting. The BPNN algorithm, through its self-learning and adaptive features, facilitates dynamic optimization and precise scheduling across various stages of the supply chain. This capability is particularly valuable in addressing challenges associated with sudden demand spikes and resource allocation. As a result, the mechanism is able to accurately and promptly identify adverse trends in the supply chain, thereby enhancing the efficiency and flexibility of urban emergency responses, mitigating risks, and offering both theoretical and practical contributions to urban collaborative governance.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-82966-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682215PMC

Publication Analysis

Top Keywords

supply chain
24
collaborative governance
12
urban collaborative
8
public health
8
health emergencies
8
fuzzy theory
8
bpnn algorithm
8
chain risks
8
supply
6
chain
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!