A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel anoikis-related diagnostic biomarkers for aortic dissection based on machine learning. | LitMetric

Novel anoikis-related diagnostic biomarkers for aortic dissection based on machine learning.

Sci Rep

Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.

Published: December 2024

Aortic dissection (AD) is one of the most dangerous diseases of the cardiovascular system, which is characterized by acute onset and poor prognosis, while the pathogenesis of AD is still unclear and may affect or even delay the diagnosis of AD. Anchorage-dependent cell death (Anoikis) is a special mode of cell death, which is programmed cell death caused by normal cells after detachment from extracellular matrix (ECM) and has been widely studied in the field of oncology in recent years. In this study, we applied bioinformatics analysis, according to the results of research analysis and Gene Ontology (GO), as well as Kyoto Encyclopedia of Genes and Genomes (KEGG), finally found 3 anoikis-related genes (ARGs) based on machine learning. Among these, TP53 and TUBB3 were further verified by receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA)and other methods. We hypothesize ARGs may be involved in the pathogenesis of AD through pathways such as oxidative stress, inflammatory response, and ECM. Therefore, we conclude that these ARGs can be potential factors in determining the diagnosis of AD.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-82655-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682115PMC

Publication Analysis

Top Keywords

cell death
12
aortic dissection
8
based machine
8
machine learning
8
gene set
8
novel anoikis-related
4
anoikis-related diagnostic
4
diagnostic biomarkers
4
biomarkers aortic
4
dissection based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!