High density laminar recordings reveal cell type and layer specific responses to infrared neural stimulation in the rat neocortex.

Sci Rep

Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary.

Published: December 2024

Infrared neural stimulation has consistently shown that temperature is a critical neuronal state variable. However, a comprehensive understanding of the biophysical background is essential. In this study, using high-density laminar electrode recordings, we investigated the impact of pulsed and continuous-wave infrared illumination on cortical neurons in anesthetized rats ([Formula: see text]). By analyzing the infrared (IR) stimulation-related responses of more than 7500 single units, we found that elevating tissue temperature with IR stimulation resulted in a significant increase in the number of cells affected, including a substantial rise in the number of inhibited cells. Pulsed stimulation affected an average of [Formula: see text] of units, resulting primarily in increased activity. In contrast, continuous stimulation significantly increased the percentage of affected cells to [Formula: see text], with single units tending to be suppressed. Furthermore, when analyzing cell types, a higher percentage of principal cells displayed increased firing rates ([Formula: see text]) compared to suppressed activity ([Formula: see text]). Meanwhile, more interneurons were suppressed ([Formula: see text]) than showed increased activity ([Formula: see text]). On average, the firing rate of neurons reached 90% of the maximal activation within approximately 36 seconds after the onset of infrared stimulation. The proportion of neurons with suppressed activity decreased with cortical depth, while the proportion of neurons with elevated activity increased in deeper layers. These results provide valuable data to understand the mechanism of infrared neural stimulation in the living brain.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-82980-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682324PMC

Publication Analysis

Top Keywords

[formula text]
28
infrared neural
12
neural stimulation
12
single units
8
increased activity
8
suppressed activity
8
activity [formula
8
proportion neurons
8
stimulation
7
[formula
7

Similar Publications

On the causal connection in lifespan correlations and the possible existence of a 'number of life' at molecular level.

Sci Rep

December 2024

Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile.

Multiple physiological traits correlates with lifespan, being unclear both the causal connection among them and with the process of ageing. In this paper, we show that six traits (such as metabolic rate, mass, heart rate, etc) acting at the system level, are all related to lifespan thru the existence of an approximately constant number of respiration cycles in a lifespan ([Formula: see text]), therefore, we find that those relationships are not independently related to ageing. In addition, we study if the approximately constant [Formula: see text] is possibly linked with the end-of-lifespan somatic mutation burden, another number recently found to be approximately constant (Cagan, Nature 604:517-524, 2022).

View Article and Find Full Text PDF

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Identifying and understanding the nonlinear behavior of memristive devices.

Sci Rep

December 2024

Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!