Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT. To address this challenge, we have developed an antibacterial composite material, silver nanoparticles coated-copper cysteamine (Cu-Cy-PEG@AgNPs), which demonstrates remarkable antibacterial activity against both gram-positive and gram-negative bacteria. Specifically, under UV irradiation, Cu-Cy-PEG@AgNPs achieves a sterilization efficiency of approximately 100% at a low concentration of 25 µg/mL. The incorporation of silver nanoparticles significantly enhances the antibacterial performance of Cu-Cy, effectively eradicating persistent bacterial biofilm infections. Moreover, Cu-Cy-PEG@AgNPs exhibits excellent biocompatibility with L929 cells, indicating its potential for use in relevant applications to combat bacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-82738-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682038PMC

Publication Analysis

Top Keywords

bacterial infections
8
persistent bacterial
8
gram-negative bacteria
8
silver nanoparticles
8
hybrids copper
4
copper cysteamine
4
cysteamine nanosheets
4
nanosheets silver
4
silver nanocluster
4
nanocluster ensure
4

Similar Publications

Prognostic role of aetiological agent vs. clinical pattern in candidates to lead extraction for cardiac implantable electronic device infections.

Sci Rep

December 2024

Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.

Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.

View Article and Find Full Text PDF

Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria.

View Article and Find Full Text PDF

In vitro susceptibility of 147 international clinical Mycobacterium abscessus isolates to epetraborole and comparators by broth microdilution.

J Antimicrob Chemother

December 2024

Division of Mycobacterial and Respiratory Infections, Department of Medicine, National Jewish Health, Denver, CO, USA.

Background: Mycobacterium abscessus is a highly drug-resistant non-tuberculous mycobacterium (NTM) for which treatment is limited by the lack of active oral antimycobacterials and frequent adverse reactions. Epetraborole is a novel oral, boron-containing antimicrobial that inhibits bacterial leucyl-tRNA synthetase, an essential enzyme in protein synthesis, and has been shown to have anti-M. abscessus activity in preclinical studies.

View Article and Find Full Text PDF

Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh)

December 2024

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.

View Article and Find Full Text PDF

is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!