Predicting host health status through an integrated machine learning framework: insights from healthy gut microbiome aging trajectory.

Sci Rep

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Published: December 2024

The gut microbiome, recognized as a critical component in the development of chronic diseases and aging processes, constitutes a promising approach for predicting host health status. Previous research has underscored the potential of microbiome-based predictions, and the rapid advancements of machine learning techniques have introduced new opportunities for exploiting microbiome data. To predict various host nonhealthy conditions, this study proposed an integrated machine learning-based estimation pipeline of Gut Age Index (GAI) by establishing a health aging baseline with the gut microbiome data from healthy individuals. We assessed the performance of GAI pipeline on two extensive cohorts - the Guangdong Gut Microbiome Project (GGMP) and the American Gut Project (AGP). In the GGMP cohort, for 20 common chronic diseases such as metabolic syndrome, obesity, and cardiovascular diseases, the proposed GAI achieved a balanced accuracy, ranging from 66 to 75%, with the prediction performance for atherosclerosis being the highest. In the AGP cohort, the balanced accuracy of GAI ranged from 58 to 72% for 10 diseases. Based on the results from these two datasets, we conclude that our proposed approach in this study can be used to predict individual health status, which offers the potential for scalable, cost-effective, and personalized health insights.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-82418-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682237PMC

Publication Analysis

Top Keywords

gut microbiome
16
health status
12
predicting host
8
host health
8
integrated machine
8
machine learning
8
chronic diseases
8
microbiome data
8
balanced accuracy
8
gut
6

Similar Publications

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh)

December 2024

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.

View Article and Find Full Text PDF

The iPhylo suite: an interactive platform for building and annotating biological and chemical taxonomic trees.

Brief Bioinform

November 2024

MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China.

Accurate and rapid taxonomic classifications are essential for systematically exploring organisms and metabolites in diverse environments. Many tools have been developed for biological taxonomic trees, but limitations apply, and a streamlined method for constructing chemical taxonomic trees is notably absent. We present the iPhylo suite (https://www.

View Article and Find Full Text PDF

The gut microbiota influences the reactivity of the immune system, and has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!