In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques. While a multicellular liquid SurePath™ dataset has been created, machine learning models struggle to classify a test image set when it is prepared differently from the training set due to visual differences. Therefore, this dataset of multicellular Pap smear images prepared with the more common ThinPrep® protocol is presented as a helpful resource for training and testing artificial intelligence models, particularly for future application in cervical dysplasia diagnosis. The "Brown Multicellular ThinPrep" (BMT) dataset is the first publicly available multicellular ThinPrep® dataset, consisting of 600 clinically vetted images collected from 180 Pap smear slides from 180 patients, classified into three key diagnostic categories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41597-024-04328-3 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682344 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!