Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death. APEC uses transcription factors (TFs) to handle oxidative stress. While many TFs in E. coli have been well characterized, the mechanism of the YbdO TF on protecting against oxidative damage and regulating the virulence and pathogenicity of APEC has not been clarified. Here we focus on the regulatory mechanism of YbdO on the pathogenicity of APEC. The results from this study showed that YbdO attenuated the pathogenicity of APEC in chicks infection models by inhibiting the expression of virulence genes fepG and ycgV using quantitative real-time reverse transcription PCR (RT-qPCR) experiments. The electrophoretic mobility shift assays (EMSA) confirmed that YbdO specifically bound to the promoters of fepG and ycgV. Additionally, YbdO increases HO-induced oxidative damage to APEC via repressing the expression of oxidative stress response genes sodA, soxR, ahpC, ahpF, katG, and oxyR by binding to their promoter regions. The repression effect facilitates host immune response to eliminate APEC and to generate beneficial immune protection to the body, thereby indirectly attenuating the pathogenicity of APEC. These findings might provide further insights into the mechanism of oxidative damage to APEC and offer new perspectives for further studies on the prevention and control of APEC infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12866-024-03715-5 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681634 | PMC |
Pol J Vet Sci
June 2024
Department of Physiology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani (Out Fall) Road, Lahore 54000, Pakistan.
The present study was designed to evaluate the protective efficacy of troxerutin against cypermethrin-induced behavioral defects, motor function abnormalities, and oxidative stress in mice. Twenty-four adult female albino mice were randomly divided into four equal groups. The first group served as control, the second group was treated with cypermethrin (20 mg/kg b.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA.
This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.
The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!