Background: Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration.
Methods: The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model. The western blot, qRT-PCR and IF were utilized to determine the effects of Exo on the levels of Follistatin, MyHC, MyoD, Myostatin, MuRF1, MAFbx, α-SMA, Collagen I, Smad2, and AKT. In addition, HE and Masson staining were used to assess muscle tissue damage in mice.
Results: The level of Follistatin in Exo was significantly higher than that in UMSCs. UMSCs-Exo increased the levels of Follistatin, MyHC, MyoD, and p-Smad2 and decreased the levels of Myostatin, MuRF1, MAFbx, α-SMA, Collagen I, p-AKT, and p-mTOR in mice or C2C12 cells. In addition, UMSCs-Exo decreased levels of inflammation and fibrosis in mice. However, UMSCs-Exo-si-Follistatin reversed the effect of UMSCs-Exo. Transfection of oe-Smad2 up-regulated the protein levels of Collagen I, α-SMA, and changed the ratio of p-Smad2/Smad2 expression to 0.33, and 0.34, 0.73. LY294002 decreased the levels of MyHC, MyoD, and the ratio of p-AKT/ AKT and p-mTOR/mTOR expression to 0.12, 0.17, 0.33, and 0.41, increased the levels of MuRF1 and MAFbx to 0.36 and 0.34.
Conclusion: This study demonstrated that Follistatin in UMSCs-Exo inhibits fibrosis and promotes muscle regeneration in mice by regulating Smad and AKT signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2024.114396 | DOI Listing |
Biomater Transl
September 2024
Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang Province, China.
Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the "gold standard" for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection.
View Article and Find Full Text PDFExp Cell Res
December 2024
Department of Extremity, Hand and Foot Microsurgery, the First People's Hospital of Chenzhou, China. Electronic address:
Background: Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration.
Methods: The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model.
Cell Biochem Biophys
December 2024
Department of Biomaterials/Osaka Dental University, 8-1, Kuzuhahanazono-cho, Osaka, 573-1121, Japan.
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.
View Article and Find Full Text PDFBrain Pathol
December 2024
Laboratory of Neurobiology and Molecular Therapeutics, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease with no effective treatments, in part caused by variations in progression and the absence of biomarkers. Mice carrying the SOD1G93A transgene with different genetic backgrounds show variable disease rates, reflecting the diversity of patients. While extensive research has been done on the involvement of the central nervous system, the role of skeletal muscle remains underexplored.
View Article and Find Full Text PDFAging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!