Metabolomic and Transcriptomic Analysis Reveals Metabolic-Immune Interactions in Choroid Neovascularization.

Exp Eye Res

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China. Electronic address:

Published: December 2024

Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis. Dominant infiltration of macrophages and monocytes was detected and a positive correlation between dysregulated riboflavin metabolism and angiogenesis pathways was characterized. Hub genes such as ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) and acid phosphatase 5, tartrate resistant (ACP5) emerged as potential central regulators of immune-metabolic crosstalk in CNV. The classification of the immune and metabolic landscape and their critical interactions in CNV models will enhance the understanding of the pathogenesis of neovascular AMD and other neovascular eye diseases, contributing to the development of multi-targeted therapeutic strategies with better efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2024.110227DOI Listing

Publication Analysis

Top Keywords

metabolomic transcriptomic
8
choroid neovascularization
8
cnv
6
analysis
5
transcriptomic analysis
4
analysis reveals
4
reveals metabolic-immune
4
metabolic-immune interactions
4
interactions choroid
4
neovascularization choroid
4

Similar Publications

Introduction: Liver cirrhosis (LC) and hepatocellular carcinoma (HCC) resulting from chronic hepatitis B virus (HBV) infection are major health concerns. Identifying critical biomarkers and molecular targets is needed for early diagnosis, prognosis, and therapy of these diseases.

Methods: In this study, we explored the gene expression and metabolism in the liver tissues of LC, HCC, and healthy controls, to analyse and identify potential biomarkers of disease progression.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs.

Life Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:

Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.

Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.

View Article and Find Full Text PDF

The present study aimed to investigate the impact of Sparassis latifolia polysaccharides (SLPs) on hepatic immune function in cyclophosphamide (CTX)-induced immunocompromised mice. Our findings demonstrated that SLPs effectively suppressed the production of alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammatory factors, and acute phase proteins, while improving the hepatic oxidative stress state. Additionally, SLPs exerted inhibitory effects on inflammatory cell infiltration within hepatic tissue.

View Article and Find Full Text PDF

Metabolic mechanism, responses, and functions of genes HDH1, HDH3, and GST1 of tea (Camellia sinensis L.) to the insecticide thiamethoxam.

J Hazard Mater

December 2024

Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States; State Key Laboratory of Tea Plant Biology and Utilization; School of Tea Science, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

Misuse of insecticides such as thiamethoxam (TMX) not only affects the quality of tea but also leaves residues in tea. Therefore, exploring the metabolic mechanisms of TMX in tea plants can evaluate effects of pesticides on the environment and human health. Here, effects of TMX on tea plants were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!