A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer. | LitMetric

Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer.

Am J Pathol

Department of Computer Science, Faculty of Engineering Sciences, University College London, London, United Kingdom.

Published: December 2024

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of artificial intelligence in computational histopathology to evaluate hypoxia in breast cancer. Weakly supervised deep learning models can accurately detect morphologic changes associated with hypoxia in routine hematoxylin and eosin (H&E)-stained whole slide images (WSIs). Our model, HypOxNet, was trained on H&E-stained WSIs from breast cancer primary sites (n = 1016) at ×40 magnification using data from The Cancer Genome Atlas. We used the Hypoxia Buffa signature to measure hypoxia scores, which ranged from -43 to 47, and stratified the samples into hypoxic and normoxic based on these scores. This stratification represented the weak labels associated with each WSI. HypOxNet achieved an average area under the curve of 0.82 on test sets, identifying significant differences in cell morphology between hypoxic and normoxic tissue regions. Importantly, once trained, the HypOxNet model requires only the readily available H&E-stained slides, making it especially valuable in low-resource settings where additional gene expression assays are not available. These artificial intelligence-based hypoxia detection models can potentially be extended to other tumor types and seamlessly integrated into pathology workflows, offering a fast, cost-effective alternative to molecular testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2024.10.023DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
morphologic changes
8
hypoxic normoxic
8
hypoxia
5
computational pathology
4
pathology detection
4
detection hypoxia-induced
4
hypoxia-induced morphologic
4
changes breast
4
cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!