A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated. The selectivity of the nanocomposite hydrogel for metal ions adsorption was determined in the sequence of Ni > Cu > Co > Cd. Adsorption of the heavy metal ions from aqueous solution by the nanocomposite magnetic hydrogel was analyzed using Langmuir and Freundlich models. The adsorption capacity by the Langmuir model was found to be 156.25, 294.11, 454.54, and 285.71 mg/g for Ni, Co, Cd, and Cu, respectively. The reusability experiments indicated that about 60 % of initial adsorption can be achieved after 6 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.139164 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Aim & Background: Increased efficacy with reduced side effects in cancer treatment is achieved through targeted distribution of anti-cancer medications. Because of their biocompatibility, biodegradability, low toxicity, and target ability under magnetic field, magnetic nanoparticles (MNP) based chitosan nanocomposite have attracted attention among other delivery technologies.
Methodology: MNPs were synthesised using the co-precipitation method.
Mater Today Bio
February 2025
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia.
We explored the feasibility of a self-assembled chitosan nanocomposite incorporating cerium oxide/nanoceria and superparamagnetic iron oxide nanoparticles (Chit-IOCO NPs), conjugated with methotrexate (MTX) and Cy5 dye, as an integrated cancer theranostic nanosystem (Chit-IOCO-MTX-Cy5). In this system, nanoceria serves as an anti-cancer agent, while the superparamagnetic iron oxide nanoparticles function as a negative contrast agent for MR imaging. This dual metal oxide nanocomposite is conjugated with MTX which is a structural analogue of folate, serving both as a targeting mechanism for folate receptors on cancer cells and as a chemotherapeutic drug.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Delhi-110007, New Delhi, India.
Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.
View Article and Find Full Text PDFDrug Discov Today
December 2024
Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:
Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!