Botox-A Induced Apoptosis and Suppressed Cell Proliferation in Fibroblasts Pre-Treated with Breast Cancer Exosomes.

Mol Cell Probes

Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. Electronic address:

Published: December 2024

Background: breast cancer-associated fibroblast (CAF) is linked to metastasis and is poor for breast cancer prognosis. Since Clostridium Toxin A (Botox-A) had represented a cytotoxic effect on fibroblasts, this study aims to assess Botox-A cytotoxicity in both normal fibroblasts and exosome-induced CAFs.

Material And Method: the serum exosomes of 40 BC patients and 30 healthy individuals were isolated and lncRNA H19 (lnch19) levels were assessed by qRT-PCR method. After that, Breast Cancer (BC) exosomes co-cultured with Human foreskin fibroblasts (HFF) and qRT-PCR were applied to evaluate α-SMA, Vimentin, BCL-2, and BAX expression. Both Normal and malignant HFFs co-cultured with Botox-A, and Botox-A loaded exosome for 24 and 48 hours and their apoptosis, Cell proliferation, and viability were monitored by MTT assay, Annexin V-FITC and PI staining and qRT-PCR for BCL-2, BAX, and cyclin D1 mRNAs.

Results: Serum exosomes of BC patients had significantly higher levels of lncRNA H19 than healthy individuals. MTT assay results showed Botox-A decreased vital Human foreskin fibroblasts in a dose-dependent manner. BC exosomes significantly increased α-SMA, Vimentin, and BCL-2 mRNA levels in Human foreskin fibroblasts, on the other hand, BAX decreased meaningfully. Co-culture of exosome-treated HFF cells with both Botox-A and Botox-A loaded exosomes significantly boosted BCL-2 mRNA levels, completely contrary to BAX and cyclid d1 expression. Meanwhile, flow cytometry results confirmed a high rate of apoptosis in malignant Human foreskin fibroblasts treated with Botox-A loaded exosome.

Conclusion: The findings of this study indicate that exosomal lncRNA H19 could be a diagnostic marker for Breast Cancer and these Breast cancer exosomes can induce malignant phenotype in fibroblasts and turn them into CAFs. Botox-A could be toxic for both normal fibroblasts and CAFs, inducing apoptosis and suppressing cell proliferation among them.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcp.2024.102007DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
human foreskin
16
foreskin fibroblasts
16
cell proliferation
12
cancer exosomes
12
lncrna h19
12
botox-a loaded
12
botox-a
10
fibroblasts
9
normal fibroblasts
8

Similar Publications

Gene Polymorphisms in Greek Primary Breast Cancer Patients.

Front Biosci (Schol Ed)

December 2024

Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.

Background: Breast cancer is a heterogeneous disease with distinct clinical subtypes, categorized by hormone receptor status, which exhibits different prognoses and requires personalized treatment approaches. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors, including interferon-gamma ().

View Article and Find Full Text PDF

Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).

Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.

View Article and Find Full Text PDF

Clinical Relevance and Drug Modulation of PPAR Signaling Pathway in Triple-Negative Breast Cancer: A Comprehensive Analysis.

PPAR Res

December 2024

Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.

Triple-negative breast cancer (TNBC) is highly heterogeneous and poses a significant medical challenge due to limited treatment options and poor outcomes. Peroxisome proliferator-activated receptors (PPARs) play a crucial role in regulating metabolism and cell fate. While the association between PPAR signal and human cancers has been a topic of concern, its specific relationship with TNBC remains unclear.

View Article and Find Full Text PDF

Previous studies have demonstrated that many healthcare workers in low- and middle-income countries (LMICs) lack the appropriate training and knowledge to recognize and diagnose breast cancer at an early stage. As a result, women in LMICs are frequently diagnosed with late-stage breast cancer (Stage III/IV) with a poor prognosis. We hosted a 1-day breast cancer educational conference directed towards healthcare workers in Honduras.

View Article and Find Full Text PDF

Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer.

Oncol Res

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!