Deep reinforcement learning (DRL) exploits the powerful representational capabilities of deep neural networks (DNNs) and has achieved significant success. However, compared to DNNs, spiking neural networks (SNNs), which operate on binary signals, more closely resemble the biological characteristics of efficient learning observed in the brain. In SNNs, spiking neurons exhibit complex dynamic characteristics and learn based on principles of biological plasticity. Inspired by the brain's efficient computational mechanisms, information encoding plays a critical role in these networks. We propose an intrinsic plasticity coding improved spiking actor network (IP-SAN) for RL to achieve effective decision-making. The IP-SAN integrates adaptive population coding at the network level with dynamic spiking neuron coding at the neuron level, improving spatiotemporal state representation and promoting more accurate biological simulation. Experimental results show that our IP-SAN outperforms several state-of-the-art methods in five continuous control tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.107054 | DOI Listing |
The purpose of this study was to understand the molecular phenotypes of adipose-derived stem cells (ASCs) and vaginal fibroblasts (VFBs) and whether pelvic organ prolapse (POP) affects their biological properties. We performed RNA sequencing of paired ASCs and VFBs from six patients with POP and six controls (CTRL). The transcriptomes of POP and CTRL in either ASCs or VFBs were compared (DESeq2, false discovery rate (FDR) < 0.
View Article and Find Full Text PDFCell Metab
January 2025
Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan. Electronic address:
Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation.
View Article and Find Full Text PDFWater Res
January 2025
CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
Microplastics (MPs) in aquatic environments has been observed globally. However, the ecological risks of MP pollution in riverhead prior to highly urbanized region remain poorly understood. This study investigated MP pollution related to microbiome in sediments, and ecological risks of MPs in riverhead prior to urbanized area over 291 km of Minjiang River (MJR) in Qinghai-Tibetan Plateau (QTP).
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Didactics of Musical, Plastic and Corporal Expression, Faculty of Education Sciences, University of Granada, Granada, Spain.
Background: Motivation is a variable that directly influences task orientation. Within the motivational sphere, the motivational climate determines whether a task is performed with an intrinsic or extrinsic.
Purpose: It has been observed that depending on motivational orientations, anxiety levels and task performance can be increased.
Sci Rep
January 2025
Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey.
NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!