Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements. Catanionic self-assemblies possess high stability, adjustable surface charge, and low critical aggregation concentration. This comprehensive review article distinguishes between cationic/anionic non-equimolar and equimolar ratio mixing formation of high-salt catanionic self-assemblies known as catanionic mixture and salt-free counterparts, termed ion-pair amphiphiles, respectively. It explores diverse synthesis techniques, emphasizing the roles of solvents, salts, and pH conditions and covers both experimental and theoretical aspects of state-of-the-art catanionic self-assemblies. Additionally, the review investigates the development of multi-responsive catanionic self-assemblies using light, pH, temperature, and redox, responsive cationic/anionic amphiphiles. It provides an in-depth exploration of potential synergistic interactions and properties, underscoring their practical importance in a wide range of industrial applications. The review explores challenges like precipitation, stability and identifies knowledge gaps, creating opportunities in the dynamic catanionic self-assembly field. It aims to offer insights into the journey of catanionic self-assemblies, from inception to current status, appealing to a broad audience invested in their scientific and industrial potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2024.103380 | DOI Listing |
Adv Colloid Interface Sci
December 2024
Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India. Electronic address:
Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements.
View Article and Find Full Text PDFLangmuir
December 2022
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka5608531, Japan.
A catanionic surfactant system is an aqueous solution or dispersion of cationic and anionic surfactants that spontaneously self-assemble into structures such as micelles, vesicles, and coacervates. Their structural diversity varies depending on the ratios of cationic and anionic surfactants (compositions), the chemical structure of the constituent molecules, etc. Herein, two types of catanionic surfactant systems were systematically characterized: (i) cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), both typical ionic surfactants; and (ii) dodecylmethylimidazolium ammonium bromide ([Cmim]Br) and SDS, where the former is an ionic liquid.
View Article and Find Full Text PDFACS Omega
August 2022
Department of Physics, Shiv Nadar University, Gautam Budha Nagar, Greater Noida, Uttar Pradesh 201314, India.
Dissipative particle dynamics (DPD) simulations has been performed to study the phase transition of a mixture of cationic and anionic surfactants in an aqueous solution as a function of the total concentration in water and the relative ratio of surfactants. The impact of the relative difference between the tail lengths of the cationic and anionic surfactants on the phase diagram has been simulated by tuning the number of DPD beads in the simulation model. This research also discusses the impact of the frequently used values of the parameters associated with the harmonic bonds among the bonded DPD beads on the obtained self-assemblies.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2015
INRA, UR1268 Biopolymères Interactions Assemblages, F-44316 Nantes, France. Electronic address:
Adv Colloid Interface Sci
May 2014
Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex, France.
Fatty acids can self-assemble under various shapes in the presence of amines or cationic components. We assemble and compare these types of self-assembly leading toward a catanionic system either with a cationic surfactant or with an amine component playing the role of counter-ion. First, we focus on the molar ratio as a key driving parameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!