Background: APG-115 is a novel small-molecule selective inhibitor that destabilizes the p53-MDM2 complex and activates p53-mediated apoptosis in tumor cells. Anlotinib inhibits tumor angiogenesis and promotes apoptosis. In this study, we investigated the apoptotic effect and potential mechanism of APG-115 and anlotinib combination on AML cell lines with different p53 backgrounds.
Material And Methods: The IC50 values of APG-115 and anlotinib were detected by CCK-8 assay. The apoptosis rate of AML cells was evaluated by Annexin-V and PI double staining. Transcriptome sequencing was performed on the MOLM16 cell line treated with APG-115 and anlotinib, and differential analysis and enrichment analysis were performed. Real-time quantitative PCR and Western blot were used to detect the changes in cell cycle and pathway-related genes and proteins in AML cell lines after drug treatment. In vivo experiments, the anti-leukemia effects of APG-115 and anlotinib on AML xenograft mouse models were evaluated.
Results: APG-115 and anlotinib could independently promote AML cell apoptosis, and the combination of the two drugs could produce a synergistic effect. Transcriptome sequencing showed that compared with the APG-115 monotherapy group, the differentially expressed genes were mainly enriched in the MDM2-p53 and PI3K/AKT pathways. In vivo experiments showed that compared with AML xenograft mice treated with either drug alone, AML progression was slowed in AML xenograft mice treated with APG-115 and anlotinib.
Conclusion: In vivo and in vitro experimental have shown that APG-115 combined with anlotinib can promote AML cells apoptosis and inhibit the progression of disease is independent of the p53 status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2024.107637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!