Drug repositioning in castration-resistant prostate cancer using systems biology and computational drug design techniques.

Comput Biol Chem

Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Published: December 2024

Background And Objective: Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.

Methods: Gene expression data of CRPC and primary prostate samples were extracted from the GEO database to identify DEGs. Pathway enrichment was performed to find the role of DEGs in signaling pathways. To identify hub proteins, the PPI network was reconstructed and analyzed. drug candidates were identified and to select the most effective drug, molecular docking analysis, and molecular dynamics simulation were performed. Then MTT and qRT-PCR tests were performed to check the effectiveness of the selected drug.

Results: A total of 152 upregulated DEGs and 343 downregulated DEGs were identified, and after PPI network analysis, IKBKB, SNAP23, MYC, and NOTCH1 genes were introduced as hubs. drug candidates for IKBKB were identified and by examining the results of docking screening and molecular dynamics, sulfasalazine was selected as the most effective drug. Laboratory analyses proved the effectiveness of this drug and a decrease in the expression of all target genes was observed.

Conclusion: In this study, IKBKB key protein were identified in CRPC, and sulfasalazine was selected as a suitable candidate for drug repositioning and its effectiveness was confirmed through tests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108329DOI Listing

Publication Analysis

Top Keywords

drug repositioning
12
drug
11
castration-resistant prostate
8
prostate cancer
8
ppi network
8
drug candidates
8
effective drug
8
molecular dynamics
8
sulfasalazine selected
8
repositioning castration-resistant
4

Similar Publications

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Drug repositioning in castration-resistant prostate cancer using systems biology and computational drug design techniques.

Comput Biol Chem

December 2024

Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Background And Objective: Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.

View Article and Find Full Text PDF

Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.

View Article and Find Full Text PDF

Therapeutic role of aripiprazole in cartilage defects explored through a drug repurposing approach.

Sci Rep

December 2024

Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.

Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!