Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes. However, the specific role of PA-X host shutoff activity in viral fitness of IAV remains poorly understood. Herein, we successfully mapped PA-X 100 V as a novel site important for host shutoff of the H7N9 and H5N1 viruses. By analysing the polymorphism of this residue in various subtype viruses, we found that PA-X 100 was highly variable in H7N9 viruses. Structural analysis revealed that 100 V was generally close to the PA-X endonuclease active site, which may account for its host shutoff activity. By generating the corresponding mutant viruses derived from the parental H7N9 virus and the PA-X-deficient H7N9 virus, we determined that PA-X 100 V significantly enhanced viral fitness in mice while diminishing viral virulence in chickens. Mechanistically, PA-X 100 V significantly increased viral polymerase activity and viral replication in mammalian cells. Furthermore, PA-X 100 V highly blunted the global host response in 293T cells, particularly restraining genes involved in energy metabolism and inflammatory response. Collectively, our data provided information about the intricate role of the PA-X host shutoff site in regulating the viral fitness of the H7N9 influenza virus, which furthers our understanding of the complicated pathogenesis of the influenza A virus.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21505594.2024.2445238DOI Listing

Publication Analysis

Top Keywords

host shutoff
24
viral fitness
16
influenza virus
16
pa-x 100 v
16
pa-x host
12
pa-x
10
viral
9
shutoff site
8
h7n9 influenza
8
host
8

Similar Publications

The PA-X host shutoff site 100 V exerts a contrary effect on viral fitness of the highly pathogenic H7N9 influenza A virus in mice and chickens.

Virulence

December 2025

Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.

Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.

View Article and Find Full Text PDF

Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection.

View Article and Find Full Text PDF

Canine parvovirus NS1 induces host translation shutoff by reducing mTOR phosphorylation.

J Virol

November 2024

Guangdong Technological Engineering Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Unlabelled: Canine parvovirus type 2 (CPV-2) is a member of the Parvoviridae family, characterized by its small, non-enveloped virions containing a linear single-stranded DNA genome of approximately 5 kb. Parvoviruses entirely reliant on the host cell's division machinery for replication. In this study, we demonstrate that CPV-2 infection triggers the host translation shutoff, a process in which the nonstructural protein 1 (NS1) plays a pivotal role.

View Article and Find Full Text PDF

Infection with novel duck reovirus induces stress granule and methylation-mediated host translational shutoff in Muscovy ducklings.

Commun Biol

November 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.

The recently identified novel duck reovirus (NDRV) is a waterfowl reovirus that can seriously harm or kill various waterfowl species. However, how NDRV interacts with host cells in Muscovy ducklings beyond the typical pathogenesis resulting from a viral infection is unknown. The current study examined the global translation efficiency of the Fabricius bursa of Muscovy ducklings infected with NDRV HN10 using mass spectrometry and ribosome footprint sequencing.

View Article and Find Full Text PDF

HSV1-induced enhancement of productive HIV-1 replication is associated with interferon pathway downregulation in human macrophages.

Mem Inst Oswaldo Cruz

October 2024

Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil.

Background: Herpesviruses are common co-pathogens in individuals infected with human immunodeficiency virus (HIV). Herpes simplex virus type 1 (HSV1) enhances HIV-1 replication and has evolved mechanisms to evade or disrupt host innate immune responses, including interference with interferon (IFN) signalling pathways.

Objectives: The aimed of this work was evaluated whether it HSV1 affects HIV-1 replication through the modulation of the IFN pathway in human macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!