The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering. It is found that the modulation of in-plane and out-of-plane SHG susceptibility components by stacking few-layer graphene is essential in producing giant SHG response in twisted multilayer graphene. Giant SHG intensity in twisted multilayer graphene is observed, reaching nearly 10 times that of monolayer MoS under 1064 nm excitation, which significantly outperformed graphene structures reported to date. Our findings present a facile and effective approach to enhance SHG in graphene structures, showing promise for future application of graphene in second harmonic nanophotonic devices as well as prospects for the study of SHG among two-dimensional (2D) structures in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c11429 | DOI Listing |
Sci Rep
December 2024
School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.
View Article and Find Full Text PDFInt J Surg
October 2024
Department of Surgery, Sapienza University of Rome, Rome, Italy.
Background: One of the most important surgical steps during thyroidectomy is the safe ligation of vessels. In fact, it is crucial to avoid postoperative bleeding and nerves' injury. The "clamp and tie" technique was first introduced in the 19th century.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
December 2024
From the Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT (Graesser), the Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, MO (Parsons), and the Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO (Olafsen, Dy, and Brogan).
Traumatic peripheral nerve injuries represent a spectrum of conditions and remain challenging to diagnose and prognosticate. High-resolution ultrasonography and magnetic resonance neurography have emerged as useful diagnostic modalities in the evaluation of traumatic peripheral nerve and brachial plexus injuries. Ultrasonography is noninvasive, is able to rapidly interrogate large areas and multiple nerves, allows for a dynamic assessment of nerves and their surrounding anatomy, and is cost-effective.
View Article and Find Full Text PDFJ Voice
December 2024
Department of Music, Faculty of Human Ecology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. Electronic address:
Background/objectives: The coronavirus disease (COVID-19) pandemic has significantly impacted global health, with Malaysia reporting over 5 million cases as of May 2024. While symptoms like fatigue and breathlessness are commonly reported among COVID-19 patients, limited research exists on the vocal and pulmonary conditions of individuals with long COVID symptoms. This study aims to assess vocal impairments and pulmonary function differences between long COVID patients and healthy controls, addressing gaps in understanding how long COVID affects vocal and respiratory health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!