Overcoming luminal breast cancer (BrCa) progression remains a critical challenge for improved overall patient survival. RUNX2 has emerged as a protein related to aggressiveness in triple-negative BrCa, however its role in luminal tumors remains elusive. We have previously shown that active FGFR2 (FGFR2-CA) contributes to increased tumor growth and that RUNX2 expression was high in hormone-independent mouse mammary carcinomas. To elucidate the interaction between FGFR2 and RUNX2 in human BrCa, we investigated their roles in tumor progression and treatment responsiveness. Increased FGFR2 activity resulted in higher RUNX2 expression, cell proliferation, and metastasis. In contrast, silencing FGFR2 reduced these parameters. Overexpression of RUNX2 in FGFR2-silenced cells rescued the inhibitory effects, promoting a more aggressive phenotype, even if compared with the wt RUNX2-transfected cells, which also had increased aggressiveness compared with naïve-transfected cells. RUNX2-overexpressing tumors were insensitive to endocrine- or FGFR inhibitor treatments. Notably, the CBFβ-RUNX complex inhibitor, AI-14-91, demonstrated great effectiveness in vitro. In a small cohort of luminal BrCa patients, nuclear RUNX2 expression was associated with tumor recurrence. Transcriptomic analysis strongly supported these data showing that patients with luminal carcinomas with high RUNX2 activity score have a worse progression-free interval than those with low RUNX2 activity. Our findings suggest a complex interplay between FGFR2 and RUNX2 in regulating tumor aggressiveness. This study underscores the significance of RUNX2 in luminal BrCa progression and posits RUNX2 as a promising therapeutic target and as a potential prognostic biomarker in luminal BrCa patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.35302DOI Listing

Publication Analysis

Top Keywords

runx2 expression
12
luminal brca
12
runx2
11
luminal breast
8
breast cancer
8
tumor progression
8
brca progression
8
fgfr2 runx2
8
brca patients
8
runx2 activity
8

Similar Publications

Overcoming luminal breast cancer (BrCa) progression remains a critical challenge for improved overall patient survival. RUNX2 has emerged as a protein related to aggressiveness in triple-negative BrCa, however its role in luminal tumors remains elusive. We have previously shown that active FGFR2 (FGFR2-CA) contributes to increased tumor growth and that RUNX2 expression was high in hormone-independent mouse mammary carcinomas.

View Article and Find Full Text PDF

Early effects of α7nAChR regulation on maxillary expansion in mice : A study on osteogenesis and inflammatory factors.

J Orofac Orthop

December 2024

Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, 100050, Beijing, China.

Purpose: We aimed to investigate early effects of regulating alpha‑7 nicotinic acetylcholine receptor (α7nAChR) agonists and antagonists on maxillary expansion in mice.

Methods: We allocated 36 six-week-old male C57BL/6J mice into three group: 1) expansion alone, 2) expansion plus the α7nAChR-specific agonist 3‑(2,4-dimethoxybenzylidene)-anabaseine dihydrochloride (GTS-21), and 3) expansion plus alpha-bungarotoxin (α-BTX), a competitive antagonist of α7nAChR. The groups were daily injected with saline, GTS-21 (4 mg/kg/day) or α‑BTX (1 mg/kg/day), respectively, from days 0-7.

View Article and Find Full Text PDF

Exploring the Effects of Zingerone on Differentiation and Signalling Pathways in Bone Cell Lines.

Metabolites

December 2024

Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.

Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.

View Article and Find Full Text PDF

In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.

View Article and Find Full Text PDF

In vitro comparison of the effects of titanium-prepared platelet-rich fibrin and leukocyte platelet-rich fibrin on osteoblast behavior and their gen expression.

BMC Oral Health

December 2024

Faculty Of Dentistry, Department of Oral and Maxillofacial Surgery, Istanbul University, Süleymaniye, Prof. Dr. Cavit Orhan Tütengil Sk. No:4, Fatih/İstanbul, 34116, Turkey.

Objective: To compare the effects of titanium-prepared platelet-rich fibrin (T-PRF) and leukocyte platelet-rich fibrin (L-PRF) on osteoblasts.

Methods: Venous blood samples were collected from ten volunteer patients to obtain T-PRF and L-PRF. The T-PRF group was labelled as Group T, the L-PRF group as Group L, and the control group, which includes only osteoblasts, was Group K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!