In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Published: December 2024

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups. By combining the high specific surface area and dense active sites of COFs with the superior conductivity of CNTs, the TpPa-COF@CNT nanocables as the anode in potassium-ion batteries displayed excellent performance. The reason is that the isomerization between the enolic and keto forms reinforces the stability of molecular architecture, while the transformation of active sites from C=N to C=O improves the K+ adsorption capability. Notably, the TpPa-COF@CNT nanocable anode exhibits a high reversible capacity of 446.1 mAh g-1 at 0.1 A g-1 and maintains 282.5 mAh g-1 even after 2000 cycles at a higher current density of 2.0 A g-1. Additionally, a full battery assembled with 3,4,9,10-Perylenetetracarboxylic dianhydride heat-treated at 450 °C as the cathode retains a reversible capacity of 273.6 mAh g-1 after 200 cycles at 0.1 A g-1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202422851DOI Listing

Publication Analysis

Top Keywords

mah g-1
12
covalent organic
8
organic frameworks
8
carbon nanotubes
8
potassium-ion batteries
8
tppa-cof@cnt nanocables
8
active sites
8
reversible capacity
8
g-1
6
situ growth
4

Similar Publications

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

The P2-NaMnO cathode material has long been constrained by phase transitions induced by the Jahn-Teller (J-T) effect during charge-discharge cycles, leading to suboptimal electrochemical performance. In this study, we employed a liquid phase co-precipitation method to incorporate Ti during the precursor MnO synthesis, followed by calcination to obtain NaTiMnO materials. We investigated the effects of Ti doping on the structure, morphology, Mn concentration, and Na diffusion coefficients of NaTiMnO.

View Article and Find Full Text PDF

Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm at 25 °C), a lithium transference number of 0.

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!