Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of was analysed by preparing and analysing ethanolic extracts of by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects. qPCR was performed to elucidate mRNA expression of proangiogenic genes in MDA-MB-231 cells after exposure to and thymol. Molecular docking analysis highlighted the interaction of thymol with VEGF receptors. treatment significantly delayed wound healing in mice compared to control group. GC-MS and HPLC analyses thymol as a bioactive compound in extract. CAM assay indicated reduced angiogenesis in thymol-treated groups, further confirmed by downregulation of proangiogenic genes. Molecular docking of thymol with VEGFR1/VEGFR2 revealed strong binding affinity, suggesting thymol-mediated receptor blocking. Thymol exhibits antiangiogenic potential and may serve as a promising therapeutic agent against cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2024.2446708DOI Listing

Publication Analysis

Top Keywords

proangiogenic genes
12
antiangiogenic potential
8
gc-ms hplc
8
molecular docking
8
thymol
6
nature's arsenal
4
arsenal unleashed
4
unleashed derived
4
derived thymol
4
thymol halts
4

Similar Publications

Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of was analysed by preparing and analysing ethanolic extracts of by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects.

View Article and Find Full Text PDF

Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes.

Cell Commun Signal

December 2024

EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland.

Background: Beyond their conventional roles in hemostasis and wound healing, platelets have been shown to facilitate hematogenous metastasis by interacting with cancer cells. Depending on the activation route, platelets also generate different platelet-derived extracellular vesicles (PEVs) that may educate cancer cells in the circulation or within the tumor microenvironment. We engaged different platelet-activating receptors, including glycoprotein VI and C-type lectin-like receptor 2, to generate a spectrum of PEV types.

View Article and Find Full Text PDF

Regeneration of functional bone tissue relies heavily on achieving adequate vascularization in engineered bone constructs following implantation. This process requires the close integration of osteogenesis and angiogenesis. Cell-free fat extract (CEFFE or FE), a recently emerging acellular fat extract containing abundant growth factors, holds significant potential for regulating osteo-angiogenic coupling and promoting regeneration of vascularized bone tissue.

View Article and Find Full Text PDF

Pan-Cancer Single-Cell Transcriptomic Analysis Reveals Divergent Expression of Embryonic Proangiogenesis Gene Modules in Tumorigenesis.

Cancer Med

November 2024

Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China.

Background: Angiogenesis is indispensable for the sustained survival and progression of both embryonic development and tumorigenesis. This intricate process is tightly regulated by a multitude of pro-angiogenic genes. The presence of gene modules facilitating angiogenesis has been substantiated in both embryonic development and the context of tumor proliferation.

View Article and Find Full Text PDF

Proximal and Classic Epithelioid Sarcomas are Distinct Molecular Entities Defined by MYC/GATA3 and SOX17/Endothelial Markers, Respectively.

Mod Pathol

November 2024

Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy. Electronic address:

Epithelioid sarcoma (ES) is a rare tumor hallmarked by the loss of INI1/SMARCB1 expression. Apart from this alteration, little is known about the biology of ES. Despite recent advances in treatment, the prognosis of ES remains unsatisfactory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!