The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway. Engineering began with creating a strain capable of producing 5-hydroxyvaleric acid (5-HV), a key precursor to 1,5-PDO, by incorporating enzymes from Pseudomonas putida (DavB, DavA, and DavT) and Escherichia coli (YahK). Two conversion pathways for further converting 5-HV to 1,5-PDO are evaluated, with the CoA-independent pathway-utilizing Mycobacterium marinum carboxylic acid reductase (CAR) and E. coli YqhD-proving greater efficiency. Further optimization continues with chromosomal integration of the 5-HV module, increasing 1,5-PDO production to 5.48 g L. An additional screening of 13 CARs identifies Mycobacterium avium K-10 (MAP1040) as the most effective, and its engineered M296E mutant further increases production to 23.5 g L. A deep-learning analysis reveals that Gluconobacter oxydans GOX1801 resolves the limitations of NADPH, allowing the final strain to produce 43.4 g L 1,5-PDO without 5-HV accumulation in fed-batch fermentation. This study demonstrates systematic approaches to optimizing microbial biosynthesis, positioning C. glutamicum as a promising platform for sustainable 1,5-PDO production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202412670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!