Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated and exploration using isolated pancreatic islets of C57BL/6J mice.

J Recept Signal Transduct Res

Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.

Published: December 2024

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation. We constructed high-quality 3D models for murine β1-AR, β2-AR, and β3-AR using Phyre2 and Ramachandran plot analysis. Molecular docking revealed NE's strong binding affinity for all three β-AR subtypes through favorable docking scores and hydrogen bond formations. We evaluated the physiological impact of NE on glucose-induced insulin secretion β-ARs under physiological and elevated glucose conditions using pancreatic islets from C57BL/6J mice. At physiological glucose levels, NE did not significantly increase insulin secretion. However, higher NE concentrations suppressed insulin release at elevated glucose. The β3-AR agonist CL316243 significantly increased ( < 0.01), insulin secretion under normal and hyperglycemic conditions, while the β3-AR antagonist L748337 substantially decreased ( < 0.01)insulin release under normal glucose, confirming their interactions through docking studies. The nonselective β-AR antagonist propranolol significantly decreased ( < 0.01)insulin secretion, suggesting alternative interactions with β1-AR and β2-AR despite lacking hydrogen bonds. Our study enhances the understanding of NE's role in modulating insulin secretion and underscores the significance of β-ARs, especially β3-AR, in its regulation, providing valuable insights for potential therapeutic interventions targeting these receptors in metabolic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10799893.2024.2446393DOI Listing

Publication Analysis

Top Keywords

insulin secretion
20
pancreatic islets
8
islets c57bl/6j
8
c57bl/6j mice
8
elevated glucose
8
insulin
7
secretion
5
deciphering involvement
4
involvement norepinephrine
4
norepinephrine β-adrenergic
4

Similar Publications

A 33-year-old Japanese man with a history of atopic dermatitis and asthma had never been diagnosed with any apparent glucose intolerance but had been aware of palpitations for >10 years. A 75g oral glucose tolerance test (OGTT) at his physical examination in March 2021 revealed fasting hyperglycemia and post-load hypoglycemia. An OGTT recheck was performed in May 2021 and was normal.

View Article and Find Full Text PDF

Background: Patients with type 1 diabetes (DM1), even in the setting of adequate glycaemic control, have an excess risk for developing cardiovascular disease. Residual insulin secretion (RIS), measured by detectable C-peptide levels in patients with DM1, might protect against diabetes-related complications. This study aimed to examine the relationship between residual insulin secretion and prognostic markers of cardiovascular complications in patients with DM1.

View Article and Find Full Text PDF

Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated and exploration using isolated pancreatic islets of C57BL/6J mice.

J Recept Signal Transduct Res

December 2024

Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.

View Article and Find Full Text PDF

Cathelicidin: Insights into Its Impact on Metabolic Syndrome and Chronic Inflammation.

Metabolites

December 2024

Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania.

: LL-37 is associated with metabolic syndrome (MetS), a constellation of risk factors comprising obesity, insulin resistance (IR), dyslipidemia, and hypertension, which elevates the risk of cardiovascular disease and type 2 diabetes. : In this narrative review, we analyzed the literature focusing on recent developments in the relationship between cathelicidin and various components of MetS to provide a comprehensive overview. : Studies have shown that LL-37 is linked to inflammation in adipose tissue (AT) and the development of IR in obesity.

View Article and Find Full Text PDF

Background: Bariatric surgery is very effective in long-term weight management. The present study was undertaken to investigate the short-term effects of sleeve gastrectomy (SG) and of Roux-en-Y gastric bypass (RYGB) on (a) gastrointestinal (GI) motility, that is gastric emptying and oro-cecal transit time and (b) secretion of regulatory gut peptides and (c) their interrelationship.

Methods: Prospective single-centre study in which we assessed gastric emptying, oro-cecal transit time and gut peptide release in 28 severely obese individuals before and 2, respectively, 12 months after bariatric surgery (either SG or RYGB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!