Transition metals are a type of metal with high chemical activity and play critical roles in plant growth and development, reproduction and environmental adaptation, as well as for human health. However, the acquisition, transportation and storage of these metals always pose specific challenges due to their nature of high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout the plants. Plants have evolved sophisticated carrier systems to facilitate their transport, which relies on tight coordination of vesicles, enzymes, metallochaperones, low-molecular weight metal ligands, and membrane transporters for metals, ligands and metal-ligand complexes. Here we review recent advances in transition metal homeostasis in plants, focusing on barriers to transition metal transport and carriers that facilitate their passage through these barriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xplc.2024.101235 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Germany.
Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States.
The bulk phase of transition metal nitrides (TMNs) has long been a subject of extensive investigation due to their utility as coating materials, electrocatalysts, and diffusion barriers, attributed to their high conductivity and refractory properties. Downscaling TMNs into two-dimensional (2D) forms would provide valuable members to the existing 2D materials repertoire, with potential enhancements across various applications. Moreover, calculations have anticipated the emergence of uncommon physical phenomena in TMNs at the 2D limit.
View Article and Find Full Text PDFTheranostics
January 2025
Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.
View Article and Find Full Text PDFTheranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!