YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

J Transl Med

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Published: December 2024

Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness. However, the functions and regulatory mechanisms of PARP1 in NB progression still remain to be determined.

Methods: The association of PARP1 expression with NB patients' survival was analyzed by mining of R2 database. Western blotting, reverse transcription-polymerase chain reaction, MTT colorimetric, soft agar, and matrigel invasion assays were utilized to assess PARP1 expression and its effects on aggressiveness of NB cell lines. Chromatin immunoprecipitation (ChIP) sequencing and ChIP assays were employed to investigate the binding of Yin Yang 1 (YY1) to PARP1 promoter. Protein interactions were explored by BioGRID database analysis, molecular docking, and co-immunoprecipitation assay. RNA sequencing and crosslinking-immunoprecipitation high throughput sequencing datasets were used to identify precursor mRNA splicing targets of non-POU domain containing octamer binding protein (NONO).

Results: High PARP1 expression was associated with poor survival of NB patients. PARP1 over-expression enhanced the proliferation and invasion of NB cell lines, confirming its oncogenic roles. YY1 was identified as a key transcriptional regulator facilitating PARP1 expression. Additionally, PARP1 interacted with NONO to induce its PARylation, resulting in stabilization of NONO protein via preventing ubiquitin-mediated degradation. NONO facilitated the splicing and mRNA maturation of target genes a disintegrin and metalloproteinase domain 8 (ADAM8) and testis-expressed gene 14 (TEX14) in a PARylation-dependent manner. Rescue experiments indicated that YY1 facilitated PARP1-mediated PARylation of NONO and subsequent mRNA maturation of ADAM8 and TEX14 in NB cells. In clinical NB cases, high expression of YY1, PARP1, NONO, ADAM8, or TEX14 was associated with poor survival of patients.

Conclusions: These findings indicate that YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during NB progression.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-024-05956-4DOI Listing

Publication Analysis

Top Keywords

parp1 expression
24
mrna maturation
16
parp1
12
parylation nono
12
yy1 drives
8
drives parp1
8
expression essential
8
essential parylation
8
nono mrna
8
cell lines
8

Similar Publications

YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

J Transl Med

December 2024

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness.

View Article and Find Full Text PDF

Background: Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage.

View Article and Find Full Text PDF

LIX1L aggravates MASH-HCC progression by reprogramming of hepatic metabolism and microenvironment via CD36.

Pharmacol Res

December 2024

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Limb expression 1-like protein (LIX1L) is an essential player in liver disorders, but its function in metabolic dysfunction-associated steatohepatitis (MASH) and associated hepatocellular carcinoma (HCC) progression remains obscure. Here, we identify LIX1L as a key integrative regulator linking lipid metabolism and inflammation, adipose tissue and hepatic microenvironment, which promotes MASH progression. LIX1L significantly upregulates in MASH patients, mouse models, and palmitic acid-stimulated hepatocytes.

View Article and Find Full Text PDF

DNA repair is a most important cellular process that helps maintain the integrity of the genome and is currently considered by researchers as one of the factors determining the maximum lifespan. The central regulator of the DNA repair process is the enzyme poly(ADP-ribose)polymerase 1 (PARP1). PARP1 catalyzes the synthesis of poly(ADP-ribose) polymer (PAR) upon DNA damage using nicotinamide adenine dinucleotide (NAD+) as a substrate.

View Article and Find Full Text PDF

Astragalus membranaceus-Carthamus tinctorius herb pair antagonizes parthanatos in cerebral ischemia/reperfusion injury via regulating PARP-1/TAX1BP1-mediated mitochondrial respiratory chain complex I.

J Ethnopharmacol

December 2024

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China. Electronic address:

Ethnopharmacological Relevance: The combination of Astragalus membranaceus (Huang Qi in Chinese, HQ) and Carthamus tinctorius (Hong Hua in Chinese, HH) is commonly employed for treating ischemic stroke (IS). The heavily oxidative environment of cerebral ischemia/reperfusion injury (CI/RI) promotes activation of poly (ADP-ribose) polymerase-1 (PARP-1), which initiates parthanatos, a regulated cell death mode. Reactive oxygen species (ROS) bursting in mitochondrial respiratory chain complex I (Complex I) is a key cause of CI/RI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!