Background: The distribution of hosts and parasitoids across patches is a key factor determining the dynamics of host-parasitoid populations. To connect behavioral rules with population dynamics, it is essential to comprehend how individual-level dispersal behavior influences the distribution of individuals. Typically, a simple deterministic model has been used to describe this connection. This study explicitly derived the relationship between individual-level dispersal behavior and the distribution of individuals across patches, contrasting it with the conventional deterministic model.

Methods: A stochastic individual-based model was developed from a widely used deterministic host-parasitoid population model. Individual-level dispersal rules were simulated in the stochastic model without assuming the resulting distributions. The models assume that the dispersal of hosts and parasitoids is independent of conspecific density. The deterministic model can be seen as an approximation of the stochastic model, describing the outcomes of stochastic processes as their expected patterns. In addition to describing the relationship between dispersal behavior and distribution across patches, its consequences for population dynamics were also examined.

Results: The stochastic model revealed that the distribution of individuals among patches varies with the number of dispersing conspecifics, whereas the deterministic model assumes independence from conspecific density, indicating that the deterministic model fails to capture the outcomes of stochastic dispersal. The resulting density-dependent distributions of hosts and parasitoids lead to other density-dependent interactions between them, such as density-dependent parasitism risk for hosts and density-dependent searching efficiency for parasitoids, ultimately affecting population dynamics. For instance, while aggregation of parasitoids is stabilizing in the deterministic model, it can be both stabilizing and destabilizing in the stochastic model.

Conclusions: The stochastic model revealed that density-dependent distributions of hosts and parasitoids emerge when individuals disperse in a density-independent manner, significantly impacting existing host-parasitoid theory, which assumes density-independent distributions. To address this, the implications of emerging density dependencies for well-known results, such as the pseudointerference of parasitoids and the CV > 1 rule, were discussed. Explicitly considering individual-level dispersal behavior is essential for understanding host-parasitoid interactions and population dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40462-024-00525-2DOI Listing

Publication Analysis

Top Keywords

hosts parasitoids
20
population dynamics
20
deterministic model
20
individual-level dispersal
16
dispersal behavior
16
stochastic model
16
density-dependent distributions
12
distributions hosts
12
distribution individuals
12
model
11

Similar Publications

Background: The distribution of hosts and parasitoids across patches is a key factor determining the dynamics of host-parasitoid populations. To connect behavioral rules with population dynamics, it is essential to comprehend how individual-level dispersal behavior influences the distribution of individuals. Typically, a simple deterministic model has been used to describe this connection.

View Article and Find Full Text PDF

Defensive tactics: lessons from Drosophila.

Biol Open

December 2024

Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA.

Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation.

View Article and Find Full Text PDF

The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.

View Article and Find Full Text PDF

A case of polyploid utility in biocontrol: reproductively-impaired triploid Nasonia vitripennis have high host-killing ability.

Pest Manag Sci

December 2024

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.

Background: Intentionally impairing the fecundity of mass-reared insects has important utility in controlling pest species. Typically, sterilized individuals are competed against wild counterparts, reducing pest population size. A novel consideration is creating biocontrol agents with lower reproductive capacity that are less likely to establish permanently or admix with wild populations, which are both emerging as legal barriers.

View Article and Find Full Text PDF

Experimental horizontal transfer of phage-derived genes to Drosophila confers innate immunity to parasitoids.

Curr Biol

December 2024

Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:

Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!