Background: Cardiometabolic index (CMI) is a comprehensive clinical parameter which integrates overweight and abnormal lipid metabolism. However, its relationship with all-cause, cardiovascular disease (CVD), and cancer mortality is still obscure. Thus, a large-scale cohort study was conducted to illustrate the causal relation between CMI and CVD, cancer, and all-cause mortality among the common American population.

Methods: Our research was performed on the basis of National Health and Nutrition Examination Survey (NHANES) database, involving 40,275 participants ranging from 1999 to 2018. The formula of CMI is [waist circumference (cm) / height (cm)] × [triglyceride (mg/dL) / high-density lipoprotein cholesterol (mg/dL)]. Outcome variables consisted of CVD, cancer, and all-cause mortality, which were identified by the International Classification of Diseases (ICD)-10. The correlation between CMI and mortality outcomes was analyzed utilizing the Kaplan-Meier survival modeling, univariate/multivariate Cox regression analysis, smooth curve fitting analysis, threshold effect analysis, and subgroup analysis. Stratification factors for subgroups included age, race/ethnicity, sex, smoking behavior, drinking behavior, BMI, hypertension, and diabetes.

Results: The baseline characteristics table includes 4,569 all-cause-induced death cases, 1,113 CVD-induced death cases, and 1,066 cancer-induced death cases. Without adjustment for potential covariates, significantly positive causal correlation existed between CMI and all-cause mortality (HR = 1.03, 95% CI 1.02,1.04, P-value<0.05), CVD mortality (HR = 1.04, 95% CI 1.03, 1.05, P-value<0.05) and cancer mortality(HR = 1.03, 95% CI 1.02, 1.05, P-value<0.05); whereas, after confounding factors were completely adjusted, the relationship lost statistical significance in CMI subgroups (P for trend>0.05). Subgroup analysis found no specific subgroups. Under a fully adjusted model, a threshold effect analysis was performed combined with smooth curve fitting, and the findings suggested an L-shaped nonlinear association within CMI and all-cause mortality (the Inflection point was 0.98); in particular, when the baseline CMI was below 0.98, there existed a negative correlation with all-cause mortality with significance (HR 0.59, 95% CI 0.43, 0.82, P-value<0.05). A nonlinear relation was observed between CMI and CVD mortality. Whereas, the correlation between CMI and cancer mortality was linear.

Conclusions: Among the general American population, baseline CMI levels exhibited an L-shaped nonlinear relationship with all-cause mortality, and the threshold value was 0.98. What's more, CMI may become an effective indicator for CVD, cancer, and all-cause mortality prediction. Further investigation is essential to confirm our findings.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12944-024-02408-2DOI Listing

Publication Analysis

Top Keywords

cvd cancer
12
all-cause mortality
12
death cases
12
cancer all-cause
8
mortality
6
all-cause
5
cmi
5
association cardiometabolic
4
cardiometabolic all-cause
4
all-cause cause-specific
4

Similar Publications

Background: Reducing premature non-communicable disease (NCD) mortality is a global challenge. Sodium is thought to increase the risk of NCD via an effect of salt per se or high-salt foods on hypertension-induced cardiovascular disease (CVD) and gastrointestinal cancer. Further, the relative risk of CVD is reportedly more closely associated with sodium/potassium ratio than with sodium alone.

View Article and Find Full Text PDF

Background: Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) comprising 85% of cases. Due to the lack of early clinical signs, metastasis often occurs before diagnosis, impacting treatment and prognosis. Cardiovascular disease (CVD) is a common comorbidity in lung cancer patients, with shared risk factors exacerbating outcomes.

View Article and Find Full Text PDF

Background: Cardiometabolic index (CMI) is a comprehensive clinical parameter which integrates overweight and abnormal lipid metabolism. However, its relationship with all-cause, cardiovascular disease (CVD), and cancer mortality is still obscure. Thus, a large-scale cohort study was conducted to illustrate the causal relation between CMI and CVD, cancer, and all-cause mortality among the common American population.

View Article and Find Full Text PDF

Background: Few studies have globally assessed the cardiovascular disease (CVD) mortality burden attributable to secondhand smoke. We aimed to address this research gap.

Methods: We used a systematic analysis design using data from the Global Burden of Disease Study 2019.

View Article and Find Full Text PDF

Worldwide, mortality was strongly affected by the COVID-19 pandemic, both directly through COVID-19 deaths and indirectly through changes in other causes of death. Here, we examine the impact of the pandemic on COVID-19 and non-COVID-19 mortality in 24 countries: Australia, Austria, Brazil, Bulgaria, Canada, Chile, Croatia, Czechia, Denmark, England and Wales, Hungary, Japan, Latvia, Lithuania, The Netherlands, Northern Ireland, Poland, Russia, Scotland, South Korea, Spain, Sweden, Switzerland, and the United States. Using demographic decomposition methods, we compare age- and cause-specific contributions to changes in female and male life expectancy at birth in 2019-2020, 2020-2021, and 2021-2022 with those before the COVID-19 pandemic (2015-2019).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!