Breast cancer (BRCA) is one of the pivotal causes of female death worldwide. And the morbidity and mortality of breast cancer have increased rapidly. Immune checkpoints are important to maintain immune tolerance and are regarded as important therapeutic targets. However, research for BRCA were limited to single immune checkpoint-related gene (ICG) and few studies have systematically explored expression profile of Immune checkpoint-related genes or attempted to construct a prognostic gene risk model based on immune checkpoint-related genes. We identified immune checkpoint-related differentially expressed genes (DEGs) in BRCA and normal breast tissues from TCGA database. A 7-gene signature was created by utilizing the univariate Cox regression model with least absolute shrinkage and selection operator (LASSO) Cox regression method. In addition, we conducted a nomogram to predict the prognostic significance. This tool enables quantitative prediction of patient prognosis, serving as a valuable reference for clinical decision-making, thereby improving patient outcomes. Relationships between our risk model and clinical indicators, TME (Tumor Microenvironment), immune cell infiltration, immune response and drug susceptibility were investigated. A set of in vitro cell assays was conducted to decipher the relationship between MAP2K6 and proliferation, invasion, migration, colony formation and apoptosis rate of breast cancer cells. As a result, we established a prognostic model composed of seven ICGs in BRCA. Based on the median risk score, BRCA patients were equally assigned into two groups of high- and low-risk. High-risk BRCA patients have poorer OS (overall survival) than low-risk patients. In addition, there were remarkable differences between these two groups in clinicopathological features, TME, immune cell infiltration, immune response and drug susceptibility. The results of GO and KEGG analyses indicated that DEGs between the high- and low-risk groups were involved in immune-related biological processes and pathways. GSEA analysis also showed that a number of immune-related pathways were notably enriched in the low-risk group. Finally, results of cell-based assays indicated that MAP2K6 may play a pivotal role in the initiation and progression of breast cancer as a tumor suppressor gene. In conclusion, we created a novel ICG signature that has the potential to predict the survival and drug sensitivity of BRCA patients. Furthermore, this study indicated that MAP2K6 may serve as a novel target for BRCA therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-82266-1DOI Listing

Publication Analysis

Top Keywords

immune checkpoint-related
20
breast cancer
20
brca patients
12
immune
11
checkpoint-related gene
8
brca
8
checkpoint-related genes
8
risk model
8
cox regression
8
immune cell
8

Similar Publications

Breast cancer (BRCA) is one of the pivotal causes of female death worldwide. And the morbidity and mortality of breast cancer have increased rapidly. Immune checkpoints are important to maintain immune tolerance and are regarded as important therapeutic targets.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a highly lethal brain tumor with a complex tumor microenvironment (TME) and poor prognosis. This study aimed to develop and validate a novel immune-related prognostic model for GBM patients to enhance personalized prognosis prediction and develop effective therapeutic strategies.

Methods: RNA sequencing and clinical data for GBM patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) (GSE83300).

View Article and Find Full Text PDF

Predicting prognosis in lung adenocarcinoma by predicting TIGIT expression: a pathomics model.

J Thorac Dis

November 2024

Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.

Background: Traditional diagnostic methods have limited efficacy in predicting the prognosis of lung adenocarcinoma (LUAD), T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is a new biomarker. This study aimed to evaluate TIGIT expression as a LUAD biomarker and predict patient prognosis using a pathological feature model.

Methods: Clinical data and pathological images from The Cancer Genome Atlas (TCGA) were analyzed.

View Article and Find Full Text PDF

Preeclampsia (PE) and endometrial cancer (EC) are two distinct conditions that share common genetic and molecular mechanisms involving immune dysregulation, endothelial dysfunction, and angiogenesis. This study aimed to investigate the potential genetic links between PE and EC, identify key prognostic genes, and develop a risk model to predict overall survival in EC patients. We conducted comprehensive genetic and molecular analyses, revealing significant overlaps in immune and angiogenic pathways between PE and EC.

View Article and Find Full Text PDF
Article Synopsis
  • PDHA1 is linked to changes in metabolism during tumor growth and shows potential as a predictor for drug sensitivity in hepatocellular carcinoma (HCC), although this area hasn't been thoroughly explored yet.
  • The study revealed that PDHA1 levels are higher in HCC tissues than in normal tissues and are associated with poorer patient outcomes, as well as with the presence of immune cells.
  • It was found that PDHA1 can serve as an independent prognostic factor for HCC, and higher expression is related to increased sensitivity to certain chemotherapy drugs, supported by strong binding in molecular docking tests.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!