Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields. However, shape-optimization problems are very challenging to solve, and there is a lack of suitable simulation tools that are both readily accessible and general in purpose. Here we present an open-source programmable environment, Morpho, and demonstrate its versatility by showcasing a range of applications from different areas of soft-matter physics: swelling hydrogels, complex fluids that form aspherical droplets, soap films and membranes, and filaments.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43588-024-00749-7DOI Listing

Publication Analysis

Top Keywords

programmable environment
8
environment shape
4
shape optimization
4
optimization shapeshifting
4
shapeshifting problems
4
problems soft
4
soft materials
4
materials underpin
4
underpin domains
4
domains science
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!