Type 1 diabetes genetic risk score variation across ancestries using whole genome sequencing and array-based approaches.

Sci Rep

Department of Clinical and Biomedical Sciences, RILD Building, Royal Devon and Exeter Hospital, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK.

Published: December 2024

A Type 1 Diabetes Genetic Risk Score (T1DGRS) aids diagnosis and prediction of Type 1 Diabetes (T1D). While traditionally derived from imputed array genotypes, Whole Genome Sequencing (WGS) provides a more direct approach and is now increasingly used in clinical and research studies. We investigated the concordance between WGS-based and array-based T1DGRS across genetic ancestries in 149,265 UK Biobank participants using WGS, TOPMed-imputed, and 1000 Genomes-imputed array genotypes. In the overall cohort, WGS-based T1DGRS demonstrated strong correlation with TOPMed-imputed array-based score (r = 0.996, average WGS-based score 0.0028 standard deviations (SD) lower, p < 10), while showing lower correlation with 1000 Genomes-imputed array-based scores (r = 0.981, 0.043 SD lower in WGS, p < 10). Ancestry-stratified analyses between WGS-based and TOPMed-imputed array-based score showed the highest correlation with European ancestry (r = 0.996, 0.044 SD lower in WGS, p < 10) followed by African ancestry (r = 0.989, 0.0193 SD lower in WGS, p < 10) and South Asian ancestry (r = 0.986, 0.0129 SD lower in WGS, p < 10 ). These differences were more pronounced when comparing WGS based score with 1000 Genomes-imputed array-based scores (r = 0.982, 0.975, 0.957 for European, South Asian, African respectively). Population-level analysis using WGS-based T1DGRS revealed significant ancestry-based stratification, with European ancestry individuals showing the highest scores, followed by South Asian (average 0.28 SD lower than Europeans, p < 10) and African ancestry individuals (average 0.89 SD lower than Europeans, p < 10). Notably, when applying the European ancestry-derived 90 centile risk threshold, only 0.71% (95% CI 0.41-1.13) of African ancestry individuals and 6.4% (95% CI 5.6-7.2) of South Asian individuals were identified as high-risk, substantially below the expected 10%. In conclusion, while WGS is viable for generating T1DGRS, with TOPMed-imputed genotypes offering a cost-effective alternative, the persistence of ancestry-based variations in T1DGRS distribution even using whole genome sequencing emphasises the need for ancestry-specific or pan-ancestry standards in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-82278-xDOI Listing

Publication Analysis

Top Keywords

type diabetes
12
diabetes genetic
8
genetic risk
8
risk score
8
genome sequencing
8
array genotypes
8
score
4
score variation
4
variation ancestries
4
ancestries genome
4

Similar Publications

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle.

View Article and Find Full Text PDF

The monocyte-to-Apolipoprotein A1 ratio (MAR) emerges as a potentially valuable inflammatory biomarker indicative of metabolic dysfunction-associated fatty liver disease (MASLD). Accordingly, this investigation primarily aims to assess the correlation between MAR and MASLD risk. A cohort comprising 957 individuals diagnosed with type 2 diabetes mellitus (T2DM) participated in this study.

View Article and Find Full Text PDF

Pediatric diabetes I is an endemic and an especially difficult disease; indeed, at this point, there does not exist a cure, but only careful management that relies on anticipating hypoglycemia. The changing physiology of children producing unique blood glucose signatures, coupled with inconsistent activities, e.g.

View Article and Find Full Text PDF

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!