This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater. Several advanced techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometer (VSM) were applied to study the structural, morphological, chemical, and magnetic properties of the prepared materials. Doped zeolite with ZnO, MgO, and FeO significantly enhances the removal of Ni (II) ions from synthetic wastewater. The zeolite-doped MgO + FeO + ZnO sample achieved a Ni (II) ions removal efficiency of 99.6%, compared to 58.9% for raw zeolites. The removal efficiencies of Ni (II) ions (Ci = 30 mg/L) from highest to lowest were 99.56%, 99.53%, 91.4%, 67.8%, and 58.93% by zeolite-doped MgO + FeO + ZnO, zeolite-doped MgO, zeolite-doped ZnO, zeolite-doped FeO, and raw zeolite sample, respectively. The highest adsorption capacity was 17.13 mg/g of zeolite-doped MgO + FeO + ZnO samples. The experimental adsorption data collected were fitted using five isotherm models, and four kinetic models. The Langmuir adsorption isotherm model and the pseudo-second-order kinetic model provided the best fit for the experimental adsorption data. This suggests that the adsorption process is complex, possibly involving electron interactions between the active sites of doped zeolite and Ni (II) species. The obtained data indicates that zeolite-doped with MgO, FeO and ZnO notably enhances the adsorptive properties of Ni (II) from synthetic wastewater. The obtained thermodynamic values confirmed that the adsorption process is spontaneous and endothermic, with increased randomness at the solid-solution interface during the adsorption process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680998 | PMC |
http://dx.doi.org/10.1038/s41598-024-81947-1 | DOI Listing |
Water Sci Technol
January 2025
Institute for Smart City of Chongqing University in Liyang, Jiangsu 213300, China.
Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs).
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.
The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.
The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.
View Article and Find Full Text PDFChemosphere
January 2025
Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!