With the rapid development of the semiconductor industry, Hardware Trojans (HT) as a kind of malicious function that can be implanted at will in all processes of integrated circuit design, manufacturing, and deployment have become a great threat in the field of hardware security. Side-channel analysis is widely used in the detection of HT due to its high efficiency, non-contact nature, and accuracy. In this paper, we propose a framework for HT detection based on contrastive learning using power consumption information in unsupervised or weakly supervised scenarios. First, the framework augments the data, such as creatively using a one-dimensional discrete chaotic mapping to disturb the data to achieve data augmentation to improve the generalization capabilities of the model. Second, the model representation is learned by comparing the similarities and differences between samples, freeing it from the dependence on labels. Finally, the detection of HT is accomplished more efficiently by categorizing the side information during circuit operation through the backbone network. Experiments on data from nine different public HTs show that the proposed method exhibits better generalization capabilities using the same network model within a comparative learning framework. The model trained on the dataset of small Trojan T100 has a detection efficiency advantage of up to 44% in detecting large Trojans, while the model trained on the dataset of large Trojan T2100 has a detection efficiency advantage of up to 10% in detecting small Trojans. The results in data imbalanced and noisy environments also show that the contrastive learning framework in this paper can better fulfill the requirements of detecting unknown HT in unsupervised or weakly supervised scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-81473-0 | DOI Listing |
Sci Rep
December 2024
College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
Vector-borne diseases pose a major worldwide health concern, impacting more than 1 billion people globally. Among various blood-feeding arthropods, mosquitoes stand out as the primary carriers of diseases significant in both medical and veterinary fields. Hence, comprehending their distinct role fulfilled by different mosquito types is crucial for efficiently addressing and enhancing control measures against mosquito-transmitted diseases.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Republic of Korea.
Polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization state of backscattered light from tissues and provides valuable insights into the birefringence properties of biological tissues. Contrastive unpaired translation (CUT) was used in this study to generate a synthetic PS-OCT image from a single OCT image. The challenges related to extensive data requirements relying on labeled datasets using only pixel-wise correlations that make it difficult to efficiently regenerate the periodic patterns observed in PS-OCT images were addressed.
View Article and Find Full Text PDFSci Rep
December 2024
Artificial Intelligence in Medical Sciences Research Center, Smart University of Medical Sciences, Tehran, Iran.
Failure to predict stroke promptly may lead to delayed treatment, causing severe consequences like permanent neurological damage or death. Early detection using deep learning (DL) and machine learning (ML) models can enhance patient outcomes and mitigate the long-term effects of strokes. The aim of this study is to compare these models, exploring their efficacy in predicting stroke.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electronic Engineering, National University of Defense Technology, Hefei, 230000, China.
Spectrum sensing is a key technology and prerequisite for Transform Domain Communication Systems (TDCS). The traditional approach typically involves selecting a working sub-band and maintaining it without further changes, with spectrum sensing being conducted periodically. However, this approach presents two main issues: on the one hand, if the selected working band has few idle channels, TDCS devices are unable to flexibly switch sub-bands, leading to reduced performance; on the other hand, periodic sensing consumes time and energy, limiting TDCS's transmission efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand.
Ultrasound biomicroscopy (UBM) is the standard for diagnosing plateau iris, but its limited accessibility in routine clinical settings presents challenges. While anterior segment optical coherence tomography (AS-OCT) is more convenient, its effectiveness in detecting plateau iris is limited. Previous research has demonstrated that combining UBM and AS-OCT image pairs through neural style transfer has improved classification accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!