Dual-biased metal oxide electrolyte-gated thin-film transistors for enhanced protonation in complex biofluids.

Sci Rep

Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea.

Published: December 2024

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit. Here, we propose a dual-biased (DB) EGTFT pH sensing platform, acquiring back-gate-assisted sensitivity enhancement and recyclable redox-coupled protonation at the semiconductor-biofluid interface. A solution-processed amorphous IGZO film, used as the proton-sensitive membrane, ensures scalable uniformity across a 6-inch wafer. These devices demonstrate exceptional pH resistivity over several hours when submerged in solutions with pH levels of 4 and 8. In-depth electrochemical investigations reveal that back-gate bias significantly enhances sensitivity beyond the Nernst limit, reaching 85 mV/pH. This improvement is due to additional charge accumulation in the channel, which expands the sensing window. As a proof of concept, we observe consistent variations in threshold voltage during repeated pH cycles, not only in standard solutions but also in physiological electrolytes such as phosphate-buffered saline (PBS) and artificial urine, confirming the potential for reliable operation in complex biological environments.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-80005-0DOI Listing

Publication Analysis

Top Keywords

oxide electrolyte-gated
8
electrolyte-gated thin-film
8
thin-film transistors
8
complex biofluids
8
nernst limit
8
dual-biased metal
4
metal oxide
4
transistors enhanced
4
enhanced protonation
4
protonation complex
4

Similar Publications

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

In this study, the sensitivity of electrolyte-gated field-effect transistor-based glucose sensors using oxide semiconductor materials was controlled via electronegativity modulation. By controlling the enzymatic reaction between glucose and glucose oxidase, which is affected by the surface potential, the sensitivity of the glucose sensor can be effectively adjusted. To evaluate the sensitivity characteristics of the glucose sensor according to electronegativity control, devices were fabricated based on InO through Ga and Zn doping.

View Article and Find Full Text PDF

Solid electrolyte-gated transistors exhibit improved chemical stability and can fulfill the requirements of microelectronic packaging. Typically, metal oxide semiconductors are employed as channel materials. However, the extrinsic electron transport properties of these oxides, which are often prone to defects, pose limitations on the overall electrical performance.

View Article and Find Full Text PDF

The prostate-specific antigen (PSA) test is considered an important way for preoperative diagnosis and accurate screening of prostate cancer. Current antigen detection methods, including radioimmunoassay, enzyme-linked immunosorbent assay and microfluidic electrochemical detection, feature expensive equipment, long testing time and poor stability. Here, we propose a portable biosensor composed of electrolyte-gated amorphous indium gallium zinc oxide (a-IGZO) transistors with an extended gate, which can achieve real-time, instant PSA detection at a low operating voltage (<2 V) owing to the liquid-free ionic conductive elastomer (ICE) serving as the gate dielectric.

View Article and Find Full Text PDF

Oxide Ionic Neuro-Transistors for Bio-inspired Computing.

Nanomaterials (Basel)

March 2024

Yongjiang Laboratory (Y-LAB), Ningbo 315202, China.

Current computing systems rely on Boolean logic and von Neumann architecture, where computing cells are based on high-speed electron-conducting complementary metal-oxide-semiconductor (CMOS) transistors. In contrast, ions play an essential role in biological neural computing. Compared with CMOS units, the synapse/neuron computing speed is much lower, but the human brain performs much better in many tasks such as pattern recognition and decision-making.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!