Sodium-glucose co-transport protein 2 (SGLT2) inhibitors, a novel category of oral hypoglycemic agents, offer a promising outlook for individuals experiencing heart failure with reduced ejection fraction. Evidence is emerging that highlights their potential in alleviating myocardial fibrosis and oxidative stress. However, the precise mechanisms through which SGLT2 inhibitors influence myocardial fibrosis induced by angiotensin II (Ang II) or transforming growth factor-β1 (TGF-β1) are not fully understood. This study aims to explore the intricate mechanisms by which SGLT2 inhibitors ameliorate myocardial fibrosis, particularly focusing on the nuanced interplay within the SIRT6 signaling pathway. Primary cardiac fibroblasts were isolated from the hearts of 1-3-day-old neonatal KM mice, were stimulated with Ang II or TGF-β1 to establish an in vitro model of myocardial fibrosis. Treatment with 10 µM Empagliflozin (EMPA) and Dapagliflozin (DAPA) significantly curtailed the proliferation of cardiac fibroblasts, substantially reduced collagen expression induced by Ang II/TGF-β1, and mitigated the phenotypic transformation and oxidative stress response. SIRT6, which is closely associated with myocardial fibrosis, demonstrated that the suppression its expression attenuated the protective effects of EMPA and DAPA against myocardial fibrosis and oxidative stress. Our findings suggest that SGLT2 inhibitors markedly decrease the Ang II/TGF-β1-induced transformation of cardiac fibroblasts to a myofibroblast phenotype by upregulating SIRT6 protein expression, thereby inhibiting oxidative stress and ameliorating myocardial fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-80829-wDOI Listing

Publication Analysis

Top Keywords

myocardial fibrosis
28
oxidative stress
20
sglt2 inhibitors
16
cardiac fibroblasts
12
fibrosis
8
fibrosis oxidative
8
mechanisms sglt2
8
myocardial
7
oxidative
5
stress
5

Similar Publications

Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis.

Free Radic Res

December 2024

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI.

View Article and Find Full Text PDF

Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.

Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.

Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.

View Article and Find Full Text PDF

Sodium-glucose co-transport protein 2 (SGLT2) inhibitors, a novel category of oral hypoglycemic agents, offer a promising outlook for individuals experiencing heart failure with reduced ejection fraction. Evidence is emerging that highlights their potential in alleviating myocardial fibrosis and oxidative stress. However, the precise mechanisms through which SGLT2 inhibitors influence myocardial fibrosis induced by angiotensin II (Ang II) or transforming growth factor-β1 (TGF-β1) are not fully understood.

View Article and Find Full Text PDF

Hypoxia-mediated cardiac tissue injury and its repair or regeneration are one of the major health management challenges globally. Unlike mammals, lower vertebrate species such as zebrafish (Danio rerio) represent a natural model to study cardiac injury, repair and regeneration. Thyroxine (T3) has been hypothesised to be one of the endocrine factors responsible for the evolutionary trade-off for acquiring endothermy and regenerative capability in higher vertebrates.

View Article and Find Full Text PDF

Cardiovascular magnetic resonance in patients with mitral valve prolapse.

J Cardiovasc Magn Reson

December 2024

School of Biomedical Engineering and Imaging Sciences-Faculty of Life Sciences and Medicine, King's College London, London, UK.

With a prevalence of 2-3% in the general population, mitral valve prolapse (MVP) is the most common valvular heart disease. The clinical course is benign in the majority of patients, although severe mitral regurgitation, heart failure, and sudden cardiac death affect a non-negligible subset of patients. Imaging of MVP was confined to echocardiography until a few years ago when it became apparent that cardiovascular magnetic resonance (CMR) could offer comparative advantages for detecting and quantifying mitral valve abnormalities alongside tissue myocardial characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!