Intestinal Development and Gut Disease: Contributions From the Caenorhabditis elegans Model.

J Surg Res

Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri. Electronic address:

Published: December 2024

The mammalian intestine is a highly organized and complex system essential for nutrient absorption, immune response, and homeostasis. Disruptions in its development can lead to various gut diseases, ranging from congenital anomalies to inflammatory and neoplastic disorders. Caenorhabditis elegans (C elegans) has emerged as a valuable model organism for studying intestinal development and gut diseases due to its genetic tractability and transparent body. This review explores the significant contributions of C elegans research to our understanding of intestinal biology, examining historical milestones, anatomical and physiological insights, and its utility in modeling gut diseases and drug discovery. We also draw comparative insights into mammalian systems and propose future research directions. The findings highlight the potential of C elegans as an essential model system for advancing our knowledge of intestinal development and its implications for human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2024.10.051DOI Listing

Publication Analysis

Top Keywords

intestinal development
12
gut diseases
12
development gut
8
intestinal
4
gut
4
gut disease
4
disease contributions
4
contributions caenorhabditis
4
caenorhabditis elegans model
4
elegans model mammalian
4

Similar Publications

Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.

View Article and Find Full Text PDF

Nutritional value, HPLC-DAD analysis and biological activities of Ceratonia siliqua L. pulp based on in vitro and in silico studies.

Sci Rep

December 2024

Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.

The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.

View Article and Find Full Text PDF

Background: Experimental and clinical studies have suggested that symbiotics might effectively manage type 2 diabetes mellitus (T2DM) by modulating the intestinal microbiota. However, these studies' limited sources, small sample sizes, and varied study designs have led to inconsistent outcomes regarding glycaemic control. This study aimed to investigate the effects of symbiotics on the anthropometric measures, glycaemic control, and lipid profiles of patients with T2DM.

View Article and Find Full Text PDF

This dataset contains demographic, morphological and pathological data, endoscopic images and videos of 191 patients with colorectal polyps. Morphological data is included based on the latest international gastroenterology classification references such as Paris, Pit and JNET classification. Pathological data includes the diagnosis of the polyps including Tubular, Villous, Tubulovillous, Hyperplastic, Serrated, Inflammatory and Adenocarcinoma with Dysplasia Grade & Differentiation.

View Article and Find Full Text PDF

CCL3 as a novel biomarker in the diagnosis of necrotizing enterocolitis.

BMC Pediatr

December 2024

Department of Clinical Laboratory, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, NO 136 Zhongshaner Road, Yuzhong Distrit, Chongqing, 400014, China.

Objectives: Neonatal necrotizing enterocolitis (NEC) is a common intestinal disease that threatens the lives of newborns and is characterized by ischemic necrosis of the small intestine and colon. As early diagnosis of NEC improves prognosis, the identification of new or complementary biomarkers is of great importance. In this study, we evaluate the diagnostic value of CCL3 in NEC and compare its effectiveness with other commonly used biomarkers, such as procalcitonin (PCT) and C-reactive protein (CRP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!