Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.
Materials And Methods: In Kelly or SH-SY5Y cells, viability was quantified by cell fitness assays. Expression was analyzed using quantitative PCR and the regulation of proteins using enzyme-linked immunoabsorbent assays (ELISA) or western blots.
Results: In MYCN-amplified Kelly cells, endogenous CCL2 levels were significantly lower compared to MYCN non-amplified SH-SY5Y cells. Treatment with 5 μM RA increased CCL2 release in both cell lines, but reduced N-Myc levels and cell numbers in Kelly cells. Over-expression of MYCN enhanced viability in SH-SY5Y cells, but did not affect RA-induced CCL2 release, while supplementation of CCL2 in Kelly cells did not prevent RA-mediated growth reduction. Impaired N-Myc or CCL2 signaling reduced the survival of all RA-treated cells and inhibition of N-Myc also decreased CCL2 levels. However, attenuated survival signaling was not generally associated with reduced levels of N-Myc or CCL2. Co-application of RA and the growth factor receptor inhibitors cediranib or crizotinib decreased N-Myc levels only in Kelly cells, while CCL2 release was dependent on the cell type and stimulus.
Conclusion: CCL2 and N-Myc promote the viability of RA-treated cells, although the levels of these mediators were not consistently correlated with cellular outcomes, especially during apoptotic signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/cgp.20490 | DOI Listing |
Immunity
December 2024
Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.
View Article and Find Full Text PDFClin Exp Immunol
December 2024
Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland.
Neutrophils are short-lived cells of the innate immune system and represent 50-70% of the circulating leucocytes. Their primary role is antimicrobial defence which they accomplish through rapid migration to sites of inflammation followed by phagocytosis, degranulation and the release of neutrophil extracellular traps (NETosis). While previously considered terminally-differentiated cells, they have been shown to have great adaptability and to play a role in conditions ranging from cancer to autoimmunity.
View Article and Find Full Text PDFCancer Lett
December 2024
Trinity St James Cancer Institute, Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin.
Radiotherapy is used to treat over 50% of cancer patients. It is often used in combination with surgery, chemotherapy, and immunotherapy, for cancers of the breast, lung, oesophagus, and rectum. Ionising radiation predominantly exerts its anti-cancer effect through both direct DNA damage and indirectly via water radiolysis and the production of reactive oxygen species.
View Article and Find Full Text PDFJ Clin Invest
December 2024
UCSF, San Francisco, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!