FN1 and VEGFA Are Potential Therapeutic Targets in Glioblastoma as Determined by Bioinformatics Analysis.

Cancer Genomics Proteomics

Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea;

Published: December 2024

Background/aim: Glioblastoma is the most malignant brain tumor, and despite advances in treatment, survival rates are still dismal. Therefore, a comprehensive understanding of the underlying molecular mechanisms of glioblastoma is needed. This study suggests potential therapeutic targets in glioblastoma that may provide new therapeutic insights.

Materials And Methods: To identify hub genes in glioblastoma, three datasets were selected from the GEO database. After screening DEGs using GEO2R, GO and KEGG analyses were performed using DAVID. The PPI network was visualized using Cytoscape and 7 hub genes were extracted. The prognostic potential of 7 hub genes was investigated using the Gliovis and GEPIA2 databases.

Results: In total, 176 up-regulated and 263 down-regulated genes were identified. From the PPI network, 7 hub genes were identified including CAMK2A, DLG4, SNAP25, SYT1, MYC, FN1, and VEGFA. Out of the 7 hub genes identified, FN1 and VEGFA have been associated with a poor prognosis in glioblastoma based on the survival analysis.

Conclusion: This study suggests that high levels of FN1 and VEGFA expression are associated with a poor prognosis in glioblastoma and that both genes are promising targets for glioblastoma therapy. Bioinformatics analysis of DEGs revealed putative targets that might reveal the molecular mechanisms underlying glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.21873/cgp.20488DOI Listing

Publication Analysis

Top Keywords

hub genes
20
fn1 vegfa
16
targets glioblastoma
12
genes identified
12
glioblastoma
9
potential therapeutic
8
therapeutic targets
8
bioinformatics analysis
8
molecular mechanisms
8
study suggests
8

Similar Publications

Metabolomic and Transcriptomic Analysis Reveals Metabolic-Immune Interactions in Choroid Neovascularization.

Exp Eye Res

December 2024

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China. Electronic address:

Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis.

View Article and Find Full Text PDF

Antisense oligonucleotides-based approaches for the treatment of multiple myeloma.

Int J Biol Macromol

December 2024

Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:

Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.

View Article and Find Full Text PDF

Metabolic and molecular basis of flavonoid biosynthesis in Lycii fructus: An integration of metabolomic and transcriptomic analysis.

J Pharm Biomed Anal

December 2024

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:

Flavonoids serve as bioactive components and contribute to medicinal and nutritional profile of Lycii fructus. However, there is limited information regarding the influence of ecological environments on the flavonoid biosynthesis pathway. In this study, we integrated transcriptome sequencing and metabonomic techniques across three distinct cultivation regions to elucidate the processes of flavonoids biosynthesis and the associated gene expression levels in L.

View Article and Find Full Text PDF

Drug repositioning in castration-resistant prostate cancer using systems biology and computational drug design techniques.

Comput Biol Chem

December 2024

Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Background And Objective: Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.

View Article and Find Full Text PDF

FXYD1 was identified as a hub gene in recurrent miscarriage and involved in decidualization via regulating Na/K-ATPase activity.

J Assist Reprod Genet

December 2024

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.

Purpose: Recurrent miscarriage (RM) is a distressing and complicated adverse pregnancy outcome. It is commonly recognized that insufficient decidualization could result in RM, but the molecular mechanisms of decidual impairment are still not fully understood. Thus, this study aimed to identify novel key genes potentially involved in RM and explore their roles played in endometrial decidualization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!