Objective: To determine how many cores should be collected per region of interest (ROI) in magnetic resonance imaging-guided fusion prostate biopsy. Magnetic resonance imaging-guided targeted prostate biopsy has led to improved detection of clinically significant prostate cancer (csPC); however, data is limited regarding the optimal number of biopsy cores that should be taken. An ideal number of cores maximizes clinically significant cancer detection while minimizing cost, discomfort, and procedure time.

Methods: Patients receiving targeted prostate biopsy (4 cores per ROI) combined with systematic 12-core prostate at our institution between January 2017 and June 2022 were retrospectively identified. Statistical simulation was used to model scenarios in which 1, 2, 3, or 4 cores were taken from the ROI, and the rate of grade group ≥2 prostate cancer (csPC) detection was determined for targeted and combined targeted plus systematic biopsy.

Results: 483 patients were identified. Transrectal (96%) and transperineal (4%) biopsies were included. For targeted biopsy, csPC was present in 21% (1 core), 26% (2 cores; P = .048), 29% (3 cores; P = .002), and 31% (4 cores; P < .001) of cases. For combined biopsy, csPC was present in 33% (1 core), 35% (2 cores; P = .4), 37% (3 cores; P = .2), and 38% (4 cores; P = .12) of cases.

Conclusion: If targeted biopsy is performed without systematic biopsy, 2 or more cores is superior to 1 core for detecting csPC. This effect is mitigated when targeted and systematic biopsy are combined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.urology.2024.12.033DOI Listing

Publication Analysis

Top Keywords

cores
13
targeted prostate
12
prostate biopsy
12
biopsy cores
12
biopsy
9
cores collected
8
collected region
8
region interest
8
targeted
8
statistical simulation
8

Similar Publications

Purpose: This in-vitro study was conducted to assess the fracture resistance of resin-bonded ceramic endocrowns with different designs at varying intracoronal depths.

Materials And Methods: Forty-eight (n = 48) extracted mandibular first molar teeth were randomly divided into four groups (n = 12). In the control group, the specimens remained untreated.

View Article and Find Full Text PDF

High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration.

Mater Today Bio

February 2025

Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China.

Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores.

View Article and Find Full Text PDF

Achieving sustainable development in livestock agriculture by balancing livestock production, reduction of greenhouse gas (GHG) emissions, and effective utilization of nitrogen nutrient has indeed been challenging. This study investigated the long-term effects of continuous cattle grazing, stocking rates, and fertilization regimens on methane (CH) emissions, soil microbial communities, and soil organic carbon (SOC) stocks in Bermudagrass pastures in East Texas, USA. Pastures were subjected to high or low stocking rates for over 50 years, with further subdivision based on fertilization: nitrogen-based fertilizer application or no fertilizer but with the growth of annual clover.

View Article and Find Full Text PDF

Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.

View Article and Find Full Text PDF

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!