Periodic mesoporous organosilica-loaded mincle agonists enhance the immunogenicity of COVID-19 subunit vaccines by dual activation of B cells and dendritic cells.

Acta Biomater

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Published: December 2024

Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response. We previously found that periodic mesoporous organosilica (PMO) could act as a potential nanoadjuvant for subunit vaccines, eliciting potent antigen-specific germinal center (GC) responses by activating naïve B cells. In this study, we describe the design of PMO decorated with TDB, a potent Macrophage-induced C-type lectin (Mincle) agonist, to improve the adjuvanticity of PMO for COVID-19 vaccines. We found that the TDB@PMO adjuvant can effectively deliver antigens to lymph nodes and promote antigen uptake by immune cells. More importantly, the TDB@PMO adjuvant vaccine could activate the innate immune of both naïve B cells and dendritic cells via the Mincle signaling pathway, and further enhance the GC responses and resulting in potent SARS-CoV-2 specific humoral and cellular immune responses. Overall, we have developed an effective and safe nanoadjuvant platform, laying the foundation for the design and development of subunit vaccines against pathogens such as SARS-CoV-2. STATEMENT OF SIGNIFICANCE: Adjuvants play a crucial role in enhancing the effectiveness of vaccines by boosting the immune response. The emergence of highly mutated viruses, such as coronaviruses, has presented new requirements for adjuvant design. This work designed a nanoadjuvant platform, TDB@PMO, to enhance the immune response of the COVID-19 subunit vaccine. The result demonstrated that TDB@PMO nanoadjuvant can simultaneously boost the activation effects of B cells and DC cells through the Mincle signaling pathway. Furthermore, immunization with TDB@PMO-RBD nanoadjuvanted vaccine in mice significantly enhanced germinal center responses and antibody production, while also eliciting a robust antigen-specific T cell immune response in spleen. This design provided a reference for the development of next-generation virus subunit vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.12.056DOI Listing

Publication Analysis

Top Keywords

subunit vaccines
20
immune response
16
vaccines
9
periodic mesoporous
8
enhance immunogenicity
8
covid-19 subunit
8
cells
8
cells dendritic
8
dendritic cells
8
existing vaccines
8

Similar Publications

Cytomegalovirus (CMV) is a leading cause of congenital infections and significant health complications in immunocompromised individuals. With no licensed CMV vaccine available, the development of the mRNA-1647 offers promising advancements in CMV prevention. We have reviewed results from Phase 1 and 2 clinical trials of the mRNA-1647 vaccine, demonstrating robust immune responses in both seronegative and seropositive participants.

View Article and Find Full Text PDF

Neutralizing antibody immune correlates in COVAIL trial recipients of an mRNA second COVID-19 vaccine boost.

Nat Commun

January 2025

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Neutralizing antibody titer has been a surrogate endpoint for guiding COVID-19 vaccine approval and use, although the pandemic's evolution and the introduction of variant-adapted vaccine boosters raise questions as to this surrogate's contemporary performance. For 985 recipients of an mRNA second bivalent or monovalent booster containing various Spike inserts [Prototype (Ancestral), Beta, Delta, and/or Omicron BA.1 or BA.

View Article and Find Full Text PDF

Application prospect of polysaccharide in the development of vaccine adjuvants.

Int J Biol Macromol

January 2025

Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:

Vaccination is an effective strategy for preventing infectious diseases. Subunit vaccines offer more precise targeting and safer protection compared with traditional inactivated virus vaccines. However, due to their poor immunogenicity, subunit vaccines necessitate the use of adjuvants to stimulate the immune system.

View Article and Find Full Text PDF

Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.

View Article and Find Full Text PDF

Introduction: We previously demonstrated efficacy of an 8-antigen recombinant subunit vaccine against a single species homologous challenge in lambs and in lambing ewes in pen trials. We subsequently demonstrated efficacy of a simplified, 2-antigen, version of this vaccine in lambs in pen trials. Here, we test both vaccines in lambing ewes in a field setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!