Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism. Metabolic reprogramming driven by bone and dental conditions alters the epigenetic landscape by modulating the activities of DNA and histone modification enzymes at the metabolite level. Epigenetic mechanisms modulate the expression of metabolic genes, consequently influencing the metabolome. The interplay between epigenetics and metabolomics is crucial in maintaining bone and dental homeostasis by preserving cell proliferation and pluripotency. This review, therefore, aimed to examine the effects of metabolic reprogramming in bone and dental-related cells on the regulation of epigenetic modifications, particularly acetylation, methylation, and lactylation. We also discuss the effects of chromatin-modifying enzymes on metabolism and the potential therapeutic benefits of dietary compounds as epigenetic modulators. In this review, we highlight the inconsistencies in current research findings and suggest potential approaches to translate fundamental insights into clinical treatments for bone and tooth diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2024.117382 | DOI Listing |
Sci Rep
December 2024
Department of Basic Sciences, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, 16066-840, Brazil.
Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.
View Article and Find Full Text PDFInt J Surg Case Rep
December 2024
Department of Internal medicine, Hawassa University Comprehensive Specialized Hospital, Hawassa, Sidama, Ethiopia.
Introduction And Importance: Chordoma is an uncommon malignant tumor that originates from the remnants of the primitive notochord in the embryo. They account for 1 % of intracranial tumors and 4 % of primary bone tumors. It is a locally aggressive tumor with a low risk of metastasis.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Department of Biomaterials/Osaka Dental University, 8-1, Kuzuhahanazono-cho, Osaka, 573-1121, Japan.
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.
View Article and Find Full Text PDFIran Biomed J
December 2024
Department of Periodontics, Faculty of Dentistry, Urmia University of Medical Sciences, Urmia, Iran.
J Oral Implantol
December 2024
Department of Post-Graduation, Latin American Institute of Dental Research and Education (ILAPEO), Curitiba, Paraná, Brazil.
Full-arch implant rehabilitation in extremely atrophic edentulous mandibles is still challenging due to the high risk of fracture and the limited bone availability. The approach proposes using short implants with immediate loading for final prostheses as a treatment option, which offers shorter treatment times and fewer invasive procedures. A 66-year-old female patient with an edentulous mandible and severe alveolar bone resorption was treated with four short implants in the interforaminal area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!