Prostate luminal cell plasticity and cancer.

Cancer Lett

Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA. Electronic address:

Published: December 2024

AI Article Synopsis

Article Abstract

Cellular plasticity in prostate cancer promotes treatment resistance. Several independent studies have used mouse models, single-cell RNA sequencing, and genetic lineage tracing approaches to characterize cellular differentiation and plasticity during prostate organogenesis, homeostasis and androgen-mediated tissue regeneration. We review these findings and recent work using immune-competent genetically-engineered mouse models to characterize cellular plasticity and clonal dynamic changes during prostate cancer progression. Collectively these studies highlight the influence of the tumor microenvironment and the function of epigenetic regulators in promoting cellular plasticity. How the epigenetic alternations that promote cell plasticity affect tumor immunogenicity remains an active area of research with implications for disease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2024.217430DOI Listing

Publication Analysis

Top Keywords

cellular plasticity
12
cell plasticity
8
plasticity prostate
8
prostate cancer
8
mouse models
8
characterize cellular
8
plasticity
6
prostate
4
prostate luminal
4
luminal cell
4

Similar Publications

Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues.

View Article and Find Full Text PDF

Rethinking cancer evolution: from genetic mutations to complex information systems in tumor reversion.

Evol Med Public Health

December 2024

Department of Surgery, University of Health Sciences, Ankara City Hospital, Cankaya, Ankara, Turkey.

Cancer research has historically focused on the somatic mutation theory, viewing cancer as a consequence of genetic mutations. However, this perspective has limitations in explaining phenomena like tumor reversion and cancer heterogeneity. This paper introduces an alternative approach: viewing cancer as a complex information-processing system shaped by its microenvironment.

View Article and Find Full Text PDF

CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model.

CNS Neurosci Ther

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

View Article and Find Full Text PDF

Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) are sentinels of the mammalian immune system that sense a wide range of danger and homeostatic signals to induce appropriately targeted T cell immune responses. Traditionally classified into two main subsets, cDC1 and cDC2, recent research shows that cDC2s exhibit significant heterogeneity and can be further subdivided. Studies in mice and humans show that, beyond their ontogeny, cDC2s acquire dynamic and tissue-specific characteristics that are influenced by local environmental signals, which impact on their functions during homeostasis, inflammation, and infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!