The purpose of this review is to better characterize the contribution and properties of FDA-approved drugs that can be found unmodified in nature. Defined inclusion criteria were applied to drugs identified in previous studies and in annual FDA approval reports to compile a comprehensive list of approved drugs found in nature. Databases and scientific literature were searched to identify chemical and drug properties of these entities, including chemical classes, approval years, drug indications, and approved delivery methods. A random sample of FDA-approved drugs not found in nature was also created for comparison. Drugs from nature are estimated to represent 5% of FDAapproved drugs. The most common classes of natural product drugs are alkaloids, oligopeptides, polyphenols, and polyketides. Approvals of unmodified drugs from nature have declined at a rate of about two per decade since the mid-1900s. Compared to non-natural drugs, drugs from nature are more likely to be used as antibacterials and for dermatological conditions. Natural drugs are also less likely to be delivered orally and more likely to have narrow therapeutic indexes. Given the limitations of unmodified natural products as drugs, the pharmaceutical sciences will likely continue to play an important role in improving the drug-likeness of natural scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2024.12.007 | DOI Listing |
BMC Microbiol
December 2024
Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.
View Article and Find Full Text PDFJ Control Release
December 2024
Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China. Electronic address:
Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies.
View Article and Find Full Text PDFPharmacol Res
December 2024
Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education. Electronic address:
Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:
Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Electronic address:
New approach methods (NAMs) are required to predict human toxicity effectively, particularly due to limitations in conducting in vivo studies. While NAMs have been established for various industries, such as cosmetics, pesticides, and drugs, their applications in natural products (NPs) are lacking. NPs' complexity (multiple ingredients and structural differences from synthetic compounds) complicates NAM development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!