A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel thermosensitive small multilamellar lipid nanoparticles with promising release characteristics made by dual centrifugation. | LitMetric

Novel thermosensitive small multilamellar lipid nanoparticles with promising release characteristics made by dual centrifugation.

Eur J Pharm Sci

Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH, 78532 Tuttlingen, Germany. Electronic address:

Published: December 2024

Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin. tSMLPs can easily be prepared through dual centrifugation (DC) at very high lipid concentrations using dipalmitoyl and distearoyl phosphatidylcholine (DPPC, DSPC) and the phospholipid dipalmitoyl-sn-glycero-phosphatidyldiglycerol (DPPG). The new particles have a hydrodynamic diameter of about 175 nm and a narrow size distribution (PDI 0.02). tSMLPs consist of multiple lipid membranes, which become increasingly closer packed towards the particle center, and have no visible aqueous core. The particles are highly stable due to strong hydrogen bond-based membrane interactions mediated by DPPG. tSMLPs can be used as carriers for water-soluble drugs (EE 25 %) entrapped within the interlamellar spaces. Based on biophysical (DSC, DLS and ITC) and morphological (cryo-EM) studies, a hypothesis is presented to explain the structural basis underlying the high temperature selectivity, as well as the unusual morphology of the new thermosensitive lipid nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2024.106999DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
12
thermosensitive small
8
small multilamellar
8
multilamellar lipid
8
dual centrifugation
8
high temperature
8
temperature selectivity
8
lipid
5
tsmlps
5
novel thermosensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!