Triticum mosaic virus (TriMV; Poacevirus tritici) is the founding member of the genus Poacevirus within the family Potyviridae. TriMV is one of the components of the wheat streak mosaic disease (WSMD) complex, an economically significant wheat disease in the Great Plains region of the USA. TriMV contains a single-stranded positive-sense RNA genome of 10,266 nts with an unusually long 5'-nontranslated region of 739 nts. TriMV is transmitted only by the Type-2 genotype of wheat curl mites (Aceria tosichella Keifer) and is mostly found as a co-infection with another wheat curl mite-transmitted wheat streak mosaic virus (WSMV). TriMV and WSMV synergistically interact in co-infected wheat with exacerbated disease symptoms. The development of an infectious cDNA clone and GFP or RFP-tagged stable expression vectors has advanced the functional genomics of TriMV, including virus-virus and virus-host interactions. NIa-Pro and CP, and P1 and NIa-Pro cistrons of TriMV are identified as elicitors of superinfection exclusion and determinants of synergistic interaction with WSMV, respectively. TriMV stably maintained P1 (1083 nts) plus NIa (1305 nts) cistrons of WSMV for more than 28 days postinoculation, suggesting that TriMV can be used as a stable gene expression vector in wheat. Because of the synchrony of the mites and viruses in this disease complex, primary management efforts should focus on the timing and presence of vector hosts. Importantly, an enhanced understanding of TriMV biology and its interactions with plants, mites, and WSMV will facilitate the development of effective tools to improve the sustainable management of the wheat-mite-virus complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2024.110377DOI Listing

Publication Analysis

Top Keywords

mosaic virus
12
trimv
10
triticum mosaic
8
functional genomics
8
gene expression
8
expression vector
8
wheat streak
8
streak mosaic
8
wheat curl
8
wsmv trimv
8

Similar Publications

Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.

View Article and Find Full Text PDF

Triticum mosaic virus (TriMV; Poacevirus tritici) is the founding member of the genus Poacevirus within the family Potyviridae. TriMV is one of the components of the wheat streak mosaic disease (WSMD) complex, an economically significant wheat disease in the Great Plains region of the USA. TriMV contains a single-stranded positive-sense RNA genome of 10,266 nts with an unusually long 5'-nontranslated region of 739 nts.

View Article and Find Full Text PDF

The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.

View Article and Find Full Text PDF

Faba bean (Vicia faba L.) is the fourth most cultivated temperate legume (Lyu et al., 2021).

View Article and Find Full Text PDF

Rice Stripe Mosaic Virus Encoded P6 Interacts with Heading Protein OsHAPL1 to Promote Viral Infection.

J Agric Food Chem

December 2024

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.

Rice stripe mosaic virus (RSMV) is the sole cytoplasmic rhabdovirus documented in naturally infected rice plants. It encodes P6, which induces delayed heading and reduces yield in infected rice plants. P6 of RSMV interacts with OsHAPL1, facilitating the interaction between OsHAPL1 and DTH8, resulting in delayed rice heading under long day conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!