Estuaries often experience multiple water quality impairments including nitrogen enrichment and elevated fecal pollution. These pollutant sources are often linked and difficult to characterize, especially in multiple use watersheds, hindering the identification of effective mitigation steps. Tillamook Bay (Oregon, USA) has a mixed-use watershed including many potential nutrient and fecal bacteria sources due to agricultural activities, human development, and local wildlife populations. In this study, microbial source tracking, watershed modeling, and stable isotope analysis were combined to understand sources of watershed nitrogen and fecal bacteria to receiving waters. Tributaries of Tillamook Bay were sampled approximately monthly from June 2016 to May 2017 at 16 sites. Paired measurements of host-associated qPCR-based genetic markers targeting human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3), and avian (GFD) fecal pollution sources and nitrate stable isotope (δN-NO) were compared to each other and to watershed modeled contributions. Ruminant and cattle-associated genetic markers were detected at a high frequency across sites, with the Rum2Bac marker detected in 94 % of samples collected across sites and concentrations significantly correlated with E. coli levels. Cattle and ruminant genetic marker concentrations increased downstream in four out of five tributaries, mirroring δN-NO spatial trends during the wet season, suggesting a similar source and delivery for these co-pollutants. Although agricultural inputs are the dominant source of both fecal contamination and nitrogen to this system, human-associated genetic markers and elevated nutrient levels (NH and PO) were observed at two sites in proximity to a wastewater treatment facility on the Trask River. Elevated δN-NO and HF183/BacR287 levels in the same samples further corroborated a wastewater impact at these sites. Results support the utility of using a combined pollutant tracking approach when evaluating nutrient and fecal pollution in agriculturally intensive watersheds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122981DOI Listing

Publication Analysis

Top Keywords

fecal pollution
12
genetic markers
12
microbial source
8
source tracking
8
tillamook bay
8
nutrient fecal
8
fecal bacteria
8
stable isotope
8
fecal
6
watershed
5

Similar Publications

A highly prevalent and specific cryptic plasmid pBI143 for human fecal pollution tracking in a subtropical urban river.

Water Res

December 2024

CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia. Electronic address:

Microbial source tracking (MST) is a critical tool for identifying sources of human and animal fecal pollution in aquatic environments. To enhance human fecal pollution tracking, this study evaluated the performance characteristics of pBI143, a cryptic plasmid recently identified for potential MST applications. Nucleic acid samples from ten animal species were screened for pBI143, revealing its presence in a small number of pigs, cows, dogs, cats, and flying fox fecal samples.

View Article and Find Full Text PDF

Estuaries often experience multiple water quality impairments including nitrogen enrichment and elevated fecal pollution. These pollutant sources are often linked and difficult to characterize, especially in multiple use watersheds, hindering the identification of effective mitigation steps. Tillamook Bay (Oregon, USA) has a mixed-use watershed including many potential nutrient and fecal bacteria sources due to agricultural activities, human development, and local wildlife populations.

View Article and Find Full Text PDF

Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study.

Environ Int

December 2024

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China. Electronic address:

Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood.

View Article and Find Full Text PDF

First Report of Microplastics in Wild Long-Tailed Macaque () Feces at Kosumpee Forest Park, Maha Sarakham, Thailand.

Vet Sci

December 2024

Departments of Psychology, Global Health, and Anthropology, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA.

Microplastic pollution is a global concern arising from the extensive production and use of plastics. The prevalence of microplastics (MPs) in the environment is escalating due in large part to the excessive use of plastics in various human-related activities. Consequently, animals are being exposed to MPs through dietary intake, which poses significant health risks to the wild populations.

View Article and Find Full Text PDF

Nitrate pollution in water bodies is a worldwide environmental problem, and identifying the sources of nitrate is of great significance to guarantee the sustainable use of water resources. A variety of water chemistry indicators and nitrate nitrogen and oxygen isotopes (N-NO and O-NO) were used to analyze the water chemistry characteristics of water bodies in Shiyan to identify the sources of nitrate in the water bodies and to calculate the contribution rate of nitrate from different pollution sources of the water bodies using the SIMMR model. The results showed that the hydrochemical types of surface water and groundwater in the study area were dominated by the HCO-Ca·Mg type, and the formation of nitrate in the water body was mainly affected by nitrification, with non-obvious denitrification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!