Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer.

Redox Biol

Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.

Published: December 2024

The increase in early-stage cancers, particularly gastrointestinal, breast and kidney cancers, has been linked to lifestyle changes such as consumption of processed foods and physical inactivity, which contribute to obesity and diabetes - major cancer risk factors. Conventional treatments such as chemotherapy and radiation often lead to severe long-term side effects, including secondary cancers and tissue damage, highlighting the need for new, safer and more effective therapies, especially for young patients. Weak electromagnetic fields (WEMF) offer a promising non-invasive approach to cancer treatment. While WEMF have been used therapeutically for musculoskeletal disorders for decades, their role in oncology is still emerging. WEMFs affect multiple cellular processes through mechanisms such as the radical pair mechanism (RPM), which alters reactive oxygen species (ROS) levels, mitochondrial function, and glycolysis, among others. This review explores the potential of WEMF in conjunction with reactive oxygen species as a cancer therapy, highlighting WEMFs selective targeting of cancer cells and its non-ionizing nature, which could reduce collateral damage compared to conventional treatments. In addition, synchronization of WEMF with circadian rhythms may further enhance its therapeutic efficacy, as has been demonstrated in other cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2024.103483DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
12
oxygen species
12
conventional treatments
8
cancer
6
strokes fell
4
fell big
4
big oaks
4
oaks weak
4
weak magnetic
4
magnetic fields
4

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Platelet-rich plasma effects on in vitro cells derived from pediatric patients with andrological diseases.

Sci Rep

December 2024

Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy.

Undescended testis and testicular torsion represent two frequent andrological diseases that affect the pediatric age. Despite these testicular disorders having different causes, they both negatively influence fertility in adulthood mainly due to the accumulation of reactive oxygen species (ROS), which represents the primary molecular damage underlying their long-term effects. The gold standard of treatment for both pathologies is surgery; however, it cannot guarantee an optimal fertility outcome in all clinical cases, underscoring the need to identify effective adjuvant therapies that may target the augmented ROS levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!